一类具有连续数字集测度的谱性
Spectrality of Some Measures withConsecutive Digits
DOI: 10.12677/PM.2025.1511266, PDF,   
作者: 刘玉凡, 郑鹏辉*:长沙理工大学数学与统计学院,湖南长沙
关键词: 谱测度傅里叶变换连续数字集Spectral Measures Fourier Transform Consecutive Digits Spectrum
摘要: 设μρ,DN,{nk}是由以下离散测度的无穷卷积定义的Borel概率测度
Abstract: μρ,DN,{nk}=δρn1DNρn2DNρn3DN*…,其中0<ρ<1,N ≥1且DN = {0,1,2,…,N - 1},{nk}k=1是一个严格递增的正整数序列,且supk≥1{nk+1-nk}<∞. 本文证明了若μρ,DN,{nk}是谱测度当且仅当存在一个自然数r使得N|ρ-r且对所有的k ≥1,nk+1-nkρ,DN,{nk} be the Borel probability measure defined by the infinite convolution of the following discrete measures μρ,DN,{nk}=δρn1DNρn2DNρn3DN*…,where0<ρ<1, N ≥1 andDN = {0,1,2,…,N - 1}, {nk}k=1 is a strictly increasing sequence of positive integers, and supk≥1{nk+1-nk}<∞. This paper demonstrates that μρ,DN,{nk} is a spectral measure if and only if there exists a natural number r such that N|ρ-r and for all k ≥1,nk+1-nk
文章引用:刘玉凡, 郑鹏辉. 一类具有连续数字集测度的谱性[J]. 理论数学, 2025, 15(11): 24-31. https://doi.org/10.12677/PM.2025.1511266

参考文献

[1] Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group The- oretic Problem. Journal of Functional Analysis, 16, 101-121.[CrossRef
[2] Tao, T. (2004) Fuglede's Conjecture Is False in 5 and Higher Dimensions. Mathematical Re- search Letters, 11, 251-258. [Google Scholar] [CrossRef
[3] Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede's Conjecture and the Existence of Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494.[CrossRef
[4] Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum, 18, 519-528. [Google Scholar] [CrossRef
[5] Lev, N. and Matolcsi, M. (2022) The Fuglede Conjecture for Convex Domains Is True in All Dimensions. Acta Mathematica, 228, 385-420.[CrossRef
[6] He, X., Lai, C. and Lau, K. (2013) Exponential Spectra in L2(μ). Applied and Computational Harmonic Analysis, 34, 327-338. [Google Scholar] [CrossRef
[7] Dutkay, D.E. and Lai, C. (2014) Uniformity of Measures with Fourier Frames. Advances in Mathematics, 252, 684-707. [Google Scholar] [CrossRef
[8] Lai, C. (2011) On Fourier Frame of Absolutely Continuous Measures. Journal of Functional Analysis, 261, 2877-2889. [Google Scholar] [CrossRef
[9] Fan, A., Fan, S., Liao, L. and Shi, R. (2019) Fuglede's Conjecture Holds in Qp. Mathematische Annalen, 375, 315-341. [Google Scholar] [CrossRef
[10] Malikiosis, R.D. and Kolountzakis, M.N. (2018) Fuglede's Conjecture on Cyclic Groups of Order pnq. Discrete Analysis.[CrossRef
[11] Shi, R.-X. (2019) Fuglede's Conjecture Holds on Cyclic Groups Zpqr. Discrete Analysis, 14, 14.
[12] Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor Measures. Journal d'Analyse Mathematique, 81, 209-238.[CrossRef
[13] Dai, X. (2012) When Does a Bernoulli Convolution Admit a Spectrum? Advances in Mathe- matics, 231, 1681-1693.[CrossRef
[14] Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathe- matics, 259, 511-531. [Google Scholar] [CrossRef
[15] An, L., He, X. and Lau, K. (2015) Spectrality of a Class of Infinite Convolutions. Advances in Mathematics, 283, 362-376. [Google Scholar] [CrossRef
[16] An, L., He, X. and Li, H. (2015) Spectrality of Infinite Bernoulli Convolutions. Journal of Functional Analysis, 269, 1571-1590. [Google Scholar] [CrossRef
[17] Wu, H.-H. and Zheng, P.-H. Spectrality of Some Infinite Convolutions on R. Submitted.
[18] An, L.-X., Li, Q. and Zhang, M.-M. Characterization of Spectral Cantor-Moran Measures with Consecutive Digits. Preprint.
[19] Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractal L2-Spaces. Journal d'Analyse Mathematique, 75, 185-228. [Google Scholar] [CrossRef
[20] Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathe- matics, 259, 511-531. [Google Scholar] [CrossRef
[21] Wu, H.-H. and Liu, J.-C. (2022) Construction of a Class of Spectral Measures. Forum Mathe- maticum, 34, 1507-1517.