|
[1]
|
Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group The-
oretic Problem. Journal of Functional Analysis, 16, 101-121.[CrossRef]
|
|
[2]
|
Tao, T. (2004) Fuglede's Conjecture Is False in 5 and Higher Dimensions. Mathematical Re-
search Letters, 11, 251-258. [Google Scholar] [CrossRef]
|
|
[3]
|
Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede's Conjecture and the Existence of
Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494.[CrossRef]
|
|
[4]
|
Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum,
18, 519-528. [Google Scholar] [CrossRef]
|
|
[5]
|
Lev, N. and Matolcsi, M. (2022) The Fuglede Conjecture for Convex Domains Is True in All
Dimensions. Acta Mathematica, 228, 385-420.[CrossRef]
|
|
[6]
|
He, X., Lai, C. and Lau, K. (2013) Exponential Spectra in L2(μ). Applied and Computational
Harmonic Analysis, 34, 327-338. [Google Scholar] [CrossRef]
|
|
[7]
|
Dutkay, D.E. and Lai, C. (2014) Uniformity of Measures with Fourier Frames. Advances in
Mathematics, 252, 684-707. [Google Scholar] [CrossRef]
|
|
[8]
|
Lai, C. (2011) On Fourier Frame of Absolutely Continuous Measures. Journal of Functional
Analysis, 261, 2877-2889. [Google Scholar] [CrossRef]
|
|
[9]
|
Fan, A., Fan, S., Liao, L. and Shi, R. (2019) Fuglede's Conjecture Holds in Qp. Mathematische
Annalen, 375, 315-341. [Google Scholar] [CrossRef]
|
|
[10]
|
Malikiosis, R.D. and Kolountzakis, M.N. (2018) Fuglede's Conjecture on Cyclic Groups of
Order pnq. Discrete Analysis.[CrossRef]
|
|
[11]
|
Shi, R.-X. (2019) Fuglede's Conjecture Holds on Cyclic Groups Zpqr. Discrete Analysis, 14,
14.
|
|
[12]
|
Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor
Measures. Journal d'Analyse Mathematique, 81, 209-238.[CrossRef]
|
|
[13]
|
Dai, X. (2012) When Does a Bernoulli Convolution Admit a Spectrum? Advances in Mathe-
matics, 231, 1681-1693.[CrossRef]
|
|
[14]
|
Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathe-
matics, 259, 511-531. [Google Scholar] [CrossRef]
|
|
[15]
|
An, L., He, X. and Lau, K. (2015) Spectrality of a Class of Infinite Convolutions. Advances in
Mathematics, 283, 362-376. [Google Scholar] [CrossRef]
|
|
[16]
|
An, L., He, X. and Li, H. (2015) Spectrality of Infinite Bernoulli Convolutions. Journal of
Functional Analysis, 269, 1571-1590. [Google Scholar] [CrossRef]
|
|
[17]
|
Wu, H.-H. and Zheng, P.-H. Spectrality of Some Infinite Convolutions on R. Submitted.
|
|
[18]
|
An, L.-X., Li, Q. and Zhang, M.-M. Characterization of Spectral Cantor-Moran Measures with
Consecutive Digits. Preprint.
|
|
[19]
|
Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractal L2-Spaces.
Journal d'Analyse Mathematique, 75, 185-228. [Google Scholar] [CrossRef]
|
|
[20]
|
Dai, X., He, X. and Lau, K. (2014) On Spectral N-Bernoulli Measures. Advances in Mathe-
matics, 259, 511-531. [Google Scholar] [CrossRef]
|
|
[21]
|
Wu, H.-H. and Liu, J.-C. (2022) Construction of a Class of Spectral Measures. Forum Mathe-
maticum, 34, 1507-1517.
|