Ricci- Yamabe 流下一类非线性抛物型方程正解的梯度估计及其应用
Gradient Estimates of PositiveSolutions for a General of NonlinearParabolic Equations under theRicci-Yamabe Flow and Its Applications
DOI: 10.12677/PM.2025.1511267, PDF,   
作者: 康彩霞:西北师范大学数学与统计学院,甘肃兰州
关键词: 梯度估计Harnack不等式Ricci-Yamabe流Gradient Estimates Harnack Inequality Ricci-Yamabe Flow
摘要: 本文讨论了黎曼流形(Mn, g(x,t))上一类非线性抛物型方程
Abstract: (Δ-∂t)u(x,t)=p(x,t)u(x,t)+q(x,t)ua+1(x,t)正解沿Ricci-Yamabe流演化的情形.其中 p(x,t),q(x,t)∈ C2,1(Mn×[0,T]), a是任意常数.运用Laplacian比较定理和极大值原理建立两种不同类型的梯度估计(Li-Yau型, Hamilton型),并给出相关应用。In this paper, we prove gradient estimates for positive solutions of a class of nonlinear parabolic equation (Δ-∂t)u(x,t)=p(x,t)u(x,t)+q(x,t)ua+1(x,t)on the Riemannian manifold (Mn, g(x,t)) under the Ricci-Yamabe ow. Here p(x,t),q(x,t)∈ C2,1(Mn×[0,T]) and a is an arbitrary constant. By using the Laplacian com- parison theorem and the maximum principle, two different types of gradient estimates (Li-Yau type, Hamilton type) are established, and relevant applications are given.
文章引用:康彩霞. Ricci- Yamabe 流下一类非线性抛物型方程正解的梯度估计及其应用[J]. 理论数学, 2025, 15(11): 32-52. https://doi.org/10.12677/PM.2025.1511267

参考文献

[1] Yau, S. (1975) Harmonic Functions on Complete Riemannian Manifolds. Communications on Pure and Applied Mathematics, 28, 201-228. [Google Scholar] [CrossRef
[2] Li, P. and Yau, S.T. (1986) On the Parabolic Kernel of the Schrodinger Operator. Acta Math- ematica, 156, 153-201. [Google Scholar] [CrossRef
[3] Hamilton, R.S. (1982) Three-Manifolds with Positive Ricci Curvature. Journal of Differential Geometry, 17, 255-306. [Google Scholar] [CrossRef
[4] Perelman, G. (2002) The Entropy Formula for the Ricci Flow and Its Geometric Applications. arXiv:math/0211159
[5] Perelman, G. (2003) Ricci Flow with Surgery on Three-Manifolds. arXiv:math/0303109
[6] Perelman, G. (2003) Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three Manifolds. arXiv:math/0307245
[7] Zhang, L. (2020) Parabolic Gradient Estimates and Harnack Inequalities for a Nonlinear Equation under the Ricci Flow. Bulletin of the Brazilian Mathematical Society, New Series, 52, 77-99.[CrossRef
[8] Zhang, L. (2020) Gradient Estimates and Harnack Inequalities for a Yamabe-Type Parabolic Equation under the Yamabe Flow. Science China Mathematics, 64, 1201-1230.[CrossRef
[9] Taheri, A. and Vahidifar, V. (2024) Hamilton and Li-Yau Type Gradient Estimates for a Weighted Nonlinear Parabolic Equation under a Super Perelman-Ricci Flow. Partial Differen- tial Equations and Applications, 5, Article No. 1.[CrossRef
[10] Taheri, A. and Vahidifar, V. (2023) Gradient Estimates for a Nonlinear Parabolic Equation on Smooth Metric Measure Spaces with Evolving Metrics and Potentials. Nonlinear Analysis, 232, Article 113255.[CrossRef
[11] Taheri, A. (2021) Liouville Theorems and Elliptic Gradient Estimates for a Nonlinear Parabolic Equation Involving the Witten Laplacian. Advances in Calculus of Variations, 16, 425-441.[CrossRef
[12] Taheri, A. (2021) Gradient Estimates for a Weighted 􀀀-Nonlinear Parabolic Equation Coupled with a Super Perelman-Ricci Flow and Implications. Potential Analysis, 59, 311-335.[CrossRef
[13] Cao, X., Fayyazuddin Ljungberg, B. and Liu, B. (2013) Differential Harnack Estimates for a Nonlinear Heat Equation. Journal of Functional Analysis, 265, 2312-2330.[CrossRef
[14] Wang, J. (2023) Gradient Estimates for a Class of Elliptic and Parabolic Equations on Riemannian Manifolds. Frontiers of Mathematics, 18, 999-1024.[CrossRef
[15] Chen, L. and Chen, W. (2008) Gradient Estimates for a Nonlinear Parabolic Equation on Complete Non-Compact Riemannian Manifolds. Annals of Global Analysis and Geometry, 35, 397-404.[CrossRef
[16] Souplet, P. and Zhang, Q.S. (2006) Sharp Gradient Estimate and Yau's Liouville Theorem for the Heat Equation on Noncompact Manifolds. Bulletin of the London Mathematical Society, 38, 1045-1053.[CrossRef
[17] Hamilton, R.S. (1993) Matrix Harnack Estimate for the Heat Equation. Communications in Analysis and Geometry, 1, 113-126. [Google Scholar] [CrossRef
[18] Guler, S. and Crasmareanu, M. (2019) Ricci-Yamabe Maps for Riemannian Flows and Their Volume Variation and Volume Entropy. Turkish Journal of Mathematics, 43, 2631-2641.[CrossRef
[19] Catalan, S.B. and Petean, J. (2025) Local Bifurcation Diagrams and Degenerate Solutions of Yamabe-Type Equations. The Journal of Geometric Analysis, 35, Article No. 125.[CrossRef
[20] Dung, H.T. and Dung, N.T. (2025) Gradient Estimates for Yamabe Type Equations under Different Curvature Conditions and Applications. Journal of Mathematical Analysis and Ap- plications, 541, Article 128769.[CrossRef
[21] Calabi, E. (1958) An Extension of E. Hopf's Maximum Principle with an Application to Riemannian Geometry. Duke Mathematical Journal, 25, 45-56. [Google Scholar] [CrossRef