|
[1]
|
Food and Agriculture Organization of the United Nations (2025) Buckwheat Production Data for World, 2020-2023. https://www.fao.org/faostat/zh/#data/QCL/visualize
|
|
[2]
|
李年顺, 成艳芬. 水稻秸秆饲料化利用的潜力与现状[J]. 饲料工业, 2025, 46(8): 157-162.
|
|
[3]
|
冉福, 焦婷, 雷赵民, 等. 不同汽爆处理下玉米秸秆品质综合评价[J]. 草地学报, 2020, 28(3): 835-843.
|
|
[4]
|
郭帅, 王颖. 小麦秸秆日粮添加纤维素酶对肉羊生长性能、养分消化和经济效益的影响[J]. 中国饲料, 2024(22): 33-36.
|
|
[5]
|
廖海浪, 郭志强, 彭芳, 等. 金荞麦秸秆粉作为肉兔饲料的营养价值研究[J]. 饲料工业, 2025, 46(5): 146-151.
|
|
[6]
|
李兴美, 陈茜, 钟孟淮, 等. 苦荞麦不同部位营养成分测定及对比分析[J]. 饲料研究, 2022, 45(13): 111-113.
|
|
[7]
|
Luthar, Z., Germ, M., Likar, M., Golob, A., Vogel-Mikuš, K., Pongrac, P., et al. (2020) Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects. Plants (Basel, Switzerland), 9, Article No. 1638. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Luthar, Z., Golob, A., Germ, M., Vombergar, B. and Kreft, I. (2021) Tartary Buckwheat in Human Nutrition. Plants (Basel, Switzerland), 10, Article No. 700. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Matsui, K. and Walker, A.R. (2020) Biosynthesis and Regulation of Flavonoids in Buckwheat. Breeding Science, 70, 74-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gandhi, G.R., Vasconcelos, A.B.S., Wu, D., Li, H., Antony, P.J., Li, H., et al. (2020) Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of in Vitro and in Vivo Studies. Nutrients, 12, Article No. 2907. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dimitrić Marković,, Petranović, N.A. and Baranac, J.M. (2000) A Spectrophotometric Study of the Copigmentation of Malvin with Caffeic and Ferulic Acids. Journal of Agricultural and Food Chemistry, 48, 5530-5536. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B. and Legrand, M. (2007) Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth. The Plant Cell, 19, 148-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gerats, A.G.M., de Vlaming, P., Doodeman, M., Al, B. and Schram, A.W. (1982) Genetic Control of the Conversion of Dihydroflavonols into Flavonols and Anthocyanins in Flowers of Petunia Hybrida. Planta, 155, 364-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Baudry, A., Heim, M.A., Dubreucq, B., Caboche, M., Weisshaar, B. and Lepiniec, L. (2004) TT2, TT8, and TTG1 Synergistically Specify the Expression of banyuls and Proanthocyanidin Biosynthesis in Arabidopsis thaliana. The Plant Journal, 39, 366-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kreft, I., Germ, M., Golob, A., Vombergar, B., Bonafaccia, F. and Luthar, Z. (2022) Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. International Journal of Molecular Sciences, 23, Article No. 3923. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
王聪, 杨春涛, 吴秋珏, 等. 芦丁的生物学特性及其在反刍动物体内吸收和代谢与生产中的应用研究[J]. 动物营养学报, 2023, 35(11): 6895-6904.
|
|
[17]
|
Zhang, D., Fang, X., Xia, W., Sun, Q., Zhang, X., Qi, Y., et al. (2024) Rutin Enhances Mitochondrial Function and Improves the Developmental Potential of Vitrified Ovine Gv-Stage Oocyte. Theriogenology, 229, 214-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cui, K., Guo, X.D., Tu, Y., Zhang, N.F., Ma, T. and Diao, Q.Y. (2015) Effect of Dietary Supplementation of Rutin on Lactation Performance, Ruminal Fermentation and Metabolism in Dairy Cows. Journal of Animal Physiology and Animal Nutrition, 99, 1065-1073. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
杨永红, 高民, 崔洪哲, 等. 高精料日粮添加芦丁对奶牛血清生化、免疫、抗氧化指标及瘤胃发酵参数的影响[J].饲料工, 2024, 45(7): 55-62.
|
|
[20]
|
乔林慧, 邢杰, 徐子萱, 等. 芦丁对奶牛瘤胃体外发酵参数、微生物区系、乳酸代谢产物含量及酶活性的影响[J]. 动物营养学报, 2023, 35(4): 2369-2382.
|
|
[21]
|
Xiao, M., Du, L., Wei, M., Wang, Y., Dong, C., Ju, J., et al. (2025) Effects of Quercetin on in Vitro Rumen Fermentation Parameters, Gas Production and Microflora of Beef Cattle. Frontiers in Microbiology, 16, Article ID: 1527405. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shi, Z., Wang, W., Shokrollahi, B., Wang, W., Abdel-Shafy, H. and Deng, T. (2025) Role of Quercetin in Modulating Inflammation and Epigenetic Regulation of Staphylococcus aureus-Induced Bovine Mastitis. Journal of Agricultural and Food Chemistry, 73, 8784-8797. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ge, J., Shelby, S.L., Wang, Y., Morse, P.D., Coffey, K., Li, J., et al. (2023) Cardioprotective Properties of Quercetin in Fescue Toxicosis-Induced Cardiotoxicity via Heart-Gut Axis in Lambs (Ovis aries). Journal of Hazardous Materials, 458, Article ID: 131843. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, H., Shi, H., Li, X., Zhou, S., Song, X., Ma, N., et al. (2025) Quercetin Alleviates LPS/iE-DAP-Induced Liver Injury by Suppressing Ferroptosis via Regulating Ferritinophagy and Intracellular Iron Efflux. Redox Biology, 81, Article ID: 103557. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, Y., Li, J., Zheng, L., Reyimjan, Y., Ma, Y., Huang, S., et al. (2024) Procyanidin B2 Improves Developmental Capacity of Bovine Oocytes via Promoting PPARγ/UCP1‐Mediated Uncoupling Lipid Catabolism during in Vitro Maturation. Cell Proliferation, 57, e13687. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, C., Zhao, Z., Yuan, X., Wang, X., Wang, H., Fan, J., et al. (2025) Luteolin Inhibits BHV-1 Replication and Alleviates Virus-Induced Inflammatory Responses by Regulating PI3K/AKT Pathway. Microbial Pathogenesis, 199, Article ID: 107258. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Huang, Q., Shan, Q., Ma, F., Li, S. and Sun, P. (2025) Chlorogenic Acid Mitigates Heat Stress-Induced Oxidative Damage in Bovine Mammary Epithelial Cells by Inhibiting NF-κB-Mediated NLRP3 Inflammasome Activation via Upregulating the Nrf2 Signaling Pathway. International Journal of Biological Macromolecules, 301, Article ID: 140133. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, P., Xu, X., Fotina, H. and Fotina, T. (2023) Anti-Inflammatory Effects of Chlorogenic Acid from Taraxacum Officinale on LTA-Stimulated Bovine Mammary Epithelial Cells via the TLR2/NF-κB Pathway. PLOS ONE, 18, e0282343. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Barroso, P.A.A., Azevedo, V.A.N., Nascimento, D.R., de Assis, E.I.T., De Lima Neto, M.F., Ferreira, A.S., et al. (2025) Chlorogenic Acid Increases Follicle Survival, Stromal Cell Density, Levels of Thiol and Glutathione Peroxidase Activity in Cultured Bovine Ovarian Tissues. Reproduction in Domestic Animals, 60, e70053. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xu, T., Zhu, H., Liu, R., Wu, X., Chang, G., Yang, Y., et al. (2022) The Protective Role of Caffeic Acid on Bovine Mammary Epithelial Cells and the Inhibition of Growth and Biofilm Formation of Gram-Negative Bacteria Isolated from Clinical Mastitis Milk. Frontiers in Immunology, 13, Article ID: 1005430. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
田晓艳, 白晓琳, 王振宇, 等. 酶法提取苦荞D-手性肌醇及体外降糖活性[J]. 现代食品科技, 2023, 39(5): 32-40.
|
|
[32]
|
Kachhawa, G., Senthil Kumar, K.V., Kulshrestha, V., Khadgawat, R., Mahey, R. and Bhatla, N. (2021) Efficacy of Myo‐inositol and D‐Chiro‐Inositol Combination on Menstrual Cycle Regulation and Improving Insulin Resistance in Young Women with Polycystic Ovary Syndrome: A Randomized Open‐Label Study. International Journal of Gynecology & Obstetrics, 158, 278-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
范春雪, 魏敏, 张丹丹, 等. D-手性肌醇对db/db小鼠降血糖和肝脏保护作用及机制[J]. 中国药理学通报, 2018, 34(12): 1713-1718.
|
|
[34]
|
Lv, D., Gao, J., Wu, Z., Sun, Z., Hao, L., Liu, S., et al. (2022) Multiomic Analyses Reveal the Effects of Supplementing Phytosterols on the Metabolic Function of the Rumen Microbiota in Perinatal Cows. Applied and Environmental Microbiology, 88, e0099222. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sun, M., Cao, Y., Cheng, J., Xu, D., Li, F., Wang, J., et al. (2024) Stigmasterol Activates the mTOR Signaling Pathway by Inhibiting ORP5 Ubiquitination to Promote Milk Synthesis in Bovine Mammary Epithelial Cells. Journal of Agricultural and Food Chemistry, 72, 14769-14785. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
姜碧薇. 酶菌混合处理粗饲料对其纤维结构及滩羊生长性能和瘤胃菌群的影响[D]: [博士学位论文]. 银川: 宁夏大学, 2021.
|
|
[37]
|
沈建平. 可降低猪肉胆固醇荞麦饲料[M]. 浙江省, 浙江华腾牧业有限公司, 2019-09-09.
|
|
[38]
|
Lu, Q., Qin, J.X., Xie, S.L., Chen, R., Xu, Y.Q., Ban, Y.M., et al. (2025) Effects of a Commercial Buckwheat Rhizome Flavonoid Extract on Milk Production, Plasma Pro-Oxidant and Antioxidant, and the Ruminal Metagenome and Metabolites in Lactating Dairy Goats. Journal of Dairy Science, 108, 12241-12256. [Google Scholar] [CrossRef]
|
|
[39]
|
Tedeschi, L.O., Muir, J.P., Naumann, H.D., Norris, A.B., Ramírez-Restrepo, C.A. and Mertens-Talcott, S.U. (2021) Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Frontiers in Veterinary Science, 8, Article ID: 628445. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, Z., He, X., Yan, L., Wang, J., Hu, X., Sun, Q., et al. (2020) Enhancing Enzymatic Hydrolysis of Corn Stover by Twin-Screw Extrusion Pretreatment. Industrial Crops and Products, 143, Article ID: 111960. [Google Scholar] [CrossRef]
|
|
[41]
|
Cao, X., Zuo, S., Lin, Y., Cai, R., Yang, F., Wang, X., et al. (2023) Expansion Improved the Physical and Chemical Properties and in Vitro Rumen Digestibility of Buckwheat Straw. Animals, 14, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lewis, S.M., Montgomery, L., Garleb, K.A., Berger, L.L. and Fahey, G.C. (1988) Effects of Alkaline Hydrogen Peroxide Treatment on in Vitro Degradation of Cellulosic Substrates by Mixed Ruminal Microorganisms and Bacteroides Succinogenes S85. Applied and Environmental Microbiology, 54, 1163-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Meng, X., Liu, F., Xiao, Y., Cao, J., Wang, M. and Duan, X. (2019) Alterations in Physicochemical and Functional Properties of Buckwheat Straw Insoluble Dietary Fiber by Alkaline Hydrogen Peroxide Treatment. Food Chemistry: X, 3, Article ID: 100029. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jiang, B., Wang, T., Zhou, Y. and Li, F. (2020) Effects of Enzyme + Bacteria Treatment on Growth Performance, Rumen Bacterial Diversity, KEGG Pathways, and the CAZy Spectrum of Tan Sheep. Bioengineered, 11, 1221-1232. [Google Scholar] [CrossRef] [PubMed]
|