球空间中超曲面的共形平均曲率流的爆破
The Blow-Up of the Conformal MeanCurvature Flow Hypersurfaces inSpherical Spaces
DOI: 10.12677/PM.2025.1511280, PDF,    国家自然科学基金支持
作者: 张斌, 刘建成*:西北师范大学数学与统计学院,甘肃兰州
关键词: 共形平均曲率流第二基本形式爆破 Conformal Mean Curvature Flow The Second Fundamental Form Blow-Up
摘要: 本文讨论了球空间中超曲面的共形平均曲率流,得到了球空间中超曲面在共形平均曲率流下的爆破定理,即任何紧致超曲面的第二基本形式平方范数的最大值在有限时间内趋于无穷。
Abstract: This paper discusses the conformal mean curvature ow for hypersurfaces in spherical space and obtains a blow-up theorem for hypersurfaces in spherical space under the conformal mean curvature ow, that is, the maximum of the squared norm of the second fundamental form of any compact hypersurface tends to infinity in finite time.
文章引用:张斌, 刘建成. 球空间中超曲面的共形平均曲率流的爆破[J]. 理论数学, 2025, 15(11): 178-195. https://doi.org/10.12677/PM.2025.1511280

参考文献

[1] Mullins, W.W. (1956) Two-Dimensional Motion of Idealized Grain Boundaries. Journal of Applied Physics, 27, 900-904. [Google Scholar] [CrossRef
[2] Brakke, K. (1978) The Motion of a Surface by Its Mean Curvature. Princeton University Press, 20.
[3] Huisken, G. (1984) Flow by Mean Curvature of Convex Surfaces into Spheres. Journal of Differential Geometry, 20, 237-266. [Google Scholar] [CrossRef
[4] Huisken, G. (1986) Contracting Convex Hypersurfaces in Riemannian Manifolds by Their Mean Curvature. Inventiones Mathematicae, 84, 463-480.[CrossRef
[5] Huisken, G. (1987) Deforming Hypersurfaces of the Sphere by Their Mean Curvature. Mathe- matische Zeitschrift, 195, 205-219. [Google Scholar] [CrossRef
[6] Ambrosio, L. and Soner, H.M. (1997) A Measure-Theoretic Approach to Higher Codimension Mean Curvature Flows. Annali Della Scuola Normal Superiore Di Pisa-Classe Di Science, 25, 27-49.
[7] Chen, J. and Li, J. (2001) Mean Curvature Flow of Surface in 4-Manifolds. Advances in Mathematics, 163, 287-309. [Google Scholar] [CrossRef
[8] Andrews, B. and Baker, C. (2010) Mean Curvature Flow of Pinched Submanifolds to Spheres. Journal of Differential Geometry, 85, 357-396. [Google Scholar] [CrossRef
[9] Baker, C. (2010) The Mean Curvature Flow of Submanifolds of High Codimension. Australian National University.
[10] Liu, K., Xu, H., Ye, F. and Zhao, E. (2013) Mean Curvature Flow of Higher Codimension in Hyperbolic Spaces. Communications in Analysis and Geometry, 21, 651-669.[CrossRef
[11] Liu, K., Xu, H., Ye, F. and Zhao, E. (2017) The Extension and Convergence of Mean Curvature Flow in Higher Codimension. Transactions of the American Mathematical Society, 370, 2231- 2262.[CrossRef
[12] Liu, K.F., Xu, H.W., Ye, F., et al. (2012) Mean Curvature Flow of Higher Codimension in Riemannian Manifolds. arXiv:1204.0107v1
[13] Baker, C. and Nguyen, H.T. (2023) Evolving Pinched Submanifolds of the Sphere by Mean Curvature Flow. Mathematische Zeitschrift, 303, Article No. 50.[CrossRef
[14] Li, Y., Xu, H. and Zhao, E. (2015) Contracting Pinched Hypersurfaces in Spheres by Their Mean Curvature. Pure and Applied Mathematics Quarterly, 11, 329-368.[CrossRef
[15] Pu, D., Su, J.J. and Xu, H.W. (2020) Surfaces Pinched by Normal Curvature for Mean Curvature Flow in Space Forms. arXiv:2004.14258v1
[16] Li, X. and Zhang, D. (2019) The Blow-Up of the Conformal Mean Curvature Flow. Science China Mathematics, 63, 733-754. [Google Scholar] [CrossRef
[17] 张棣.标准高斯空间中子流形的平均曲率流[D]:[博士学位论文].成都:四川大学,2021.
[18] Hamilton, R.S. (1982) Three-Manifolds with Positive Ricci Curvature. Journal of Differential Geometry, 17, 255-306. [Google Scholar] [CrossRef