|
[1]
|
Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., et al. (2019) Vehicular
Traffic, Crowds, and Swarms: From Kinetic Theory and Multiscale Methods to Applications
and Research Perspectives. Mathematical Models and Methods in Applied Sciences, 29, 1901-
2005.[CrossRef]
|
|
[2]
|
Muntean, A. and Toschi, F., Eds. (2014) Collective Dynamics from Bacteria to Crowds: An
Excursion through Modeling, Analysis and Simulation (Vol. 553). Springer Science & Business
Media.
|
|
[3]
|
Naldi, G., Pareschi, L. and Toscani, G. (2010) Mathematical Modeling of Collective Behavior
in Socio-Economic and Life Sciences. Springer Science & Business Media.
|
|
[4]
|
Chizat, L. and Bach, F. (2018) On the Global Convergence of Gradient Descent for Overparameterized
Models Using Optimal Transport. Advances in Neural Information Processing
Systems, 31.
|
|
[5]
|
Rotskoff, G. and Vanden-Eijnden, E. (2022) Trainability and Accuracy of Artificial Neural
Networks: An Interacting Particle System Approach. Communications on Pure and Applied
Mathematics, 75, 1889-1935.[CrossRef]
|
|
[6]
|
Carrillo, J.A., Jin, S., Li, L. and Zhu, Y. (2021) A Consensus-Based Global Optimization
Method for High Dimensional Machine Learning Problems. ESAIM: Control, Optimisation
and Calculus of Variations, 27, S5.[CrossRef]
|
|
[7]
|
Grassi, S. and Pareschi, L. (2021) From Particle Swarm Optimization to Consensus Based
Optimization: Stochastic Modeling and Mean-Field Limit. Mathematical Models and Methods
in Applied Sciences, 31, 1625-1657.[CrossRef]
|
|
[8]
|
Totzeck, C. (2021) Trends in Consensus-Based Optimization. In: Bellomo, N., Carrillo, J.A.
and Tadmor, E., Eds., Modeling and Simulation in Science, Engineering and Technology,
Springer International Publishing, 201-226. [Google Scholar] [CrossRef]
|
|
[9]
|
Comte, F., Coutin, L. and Renault, E. (2010) Affine Fractional Stochastic Volatility Models.
Annals of Finance, 8, 337-378. [Google Scholar] [CrossRef]
|
|
[10]
|
Chronopoulou, A. and Viens, F.G. (2010) Estimation and Pricing under Long-Memory Stochastic
Volatility. Annals of Finance, 8, 379-403.[CrossRef]
|
|
[11]
|
Eftaxias, K., Contoyiannis, Y., Balasis, G., Karamanos, K., Kopanas, J., Antonopoulos, G.,
et al. (2008) Evidence of Fractional-Brownian-Motion-Type Asperity Model for Earthquake
Generation in Candidate Pre-Seismic Electromagnetic Emissions. Natural Hazards and Earth
System Sciences, 8, 657-669.[CrossRef]
|
|
[12]
|
Norros, I. (1995) On the Use of Fractional Brownian Motion in the Theory of Connectionless
Networks. IEEE Journal on Selected Areas in Communications, 13, 953-962.[CrossRef]
|
|
[13]
|
Lai, D., Davis, B.R. and Hardy, R.J. (2000) Fractional Brownian Motion and Clinical Trials.
Journal of Applied Statistics, 27, 103-108. [Google Scholar] [CrossRef]
|
|
[14]
|
Amorino, C., Belomestny, D., Pilipauskaitė, V., Podolskij, M. and Zhou, S. (2024) Polynomial
Rates via Deconvolution for Nonparametric Estimation in Mckean-Vlasov SDEs. Probability
Theory and Related Fields, 193, 539-584.[CrossRef]
|
|
[15]
|
Belomestny, D., Pilipauskaitė, V. and Podolskij, M. (2023) Semiparametric Estimation of
Mckean-Vlasov Sdes. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 59,
79-96.[CrossRef]
|
|
[16]
|
Della Maestra, L. and Hoffmann, M. (2021) Nonparametric Estimation for Interacting Particle
Systems: Mckean-Vlasov Models. Probability Theory and Related Fields, 182, 551-613.[CrossRef]
|
|
[17]
|
Amorino, C., Heidari, A., Pilipauskaitė, V. and Podolskij, M. (2023) Parameter Estimation of
Discretely Observed Interacting Particle Systems. Stochastic Processes and Their Applications,
163, 350-386.[CrossRef]
|
|
[18]
|
Bishwal, J.P.N. (2011) Estimation in Interacting Diffusions: Continuous and Discrete Sampling.
Applied Mathematics, 2, 1154-1158. [Google Scholar] [CrossRef]
|
|
[19]
|
Genon-Catalot, V. and Larédo, C. (2021) Parametric Inference for Small Variance and Long
Time Horizon Mckean-Vlasov Diffusion Models. Electronic Journal of Statistics, 15, 5811-5854.[CrossRef]
|
|
[20]
|
Genon-Catalot, V. and Larédo, C. (2021) Probabilistic Properties and Parametric Inference
of Small Variance Nonlinear Self-Stabilizing Stochastic Differential Equations. Stochastic Processes
and Their Applications, 142, 513-548.[CrossRef]
|
|
[21]
|
Amorino, C., Nourdin, I. and Shevchenko, R. (2025) Fractional Interacting Particle System:
Drift Parameter Estimation via Malliavin Calculus. arXiv:2502.06514v2 [math.ST]
|
|
[22]
|
Mandelbrot, B.B. and Van Ness, J.W. (1968) Fractional Brownian Motions, Fractional Noises
and Applications. SIAM Review, 10, 422-437.[CrossRef]
|
|
[23]
|
Hu, Y. (2016) Analysis on Gaussian Spaces. World Scientific. [Google Scholar] [CrossRef]
|
|
[24]
|
Chaintron, L. and Diez, A. (2022) Propagation of Chaos: A Review of Models, Methods and
Applications. I. Models and Methods. Kinetic and Related Models, 15, 895-1015.[CrossRef]
|
|
[25]
|
Chaintron, L. and Diez, A. (2022) Propagation of Chaos: A Review of Models, Methods and
Applications. II. Applications. Kinetic and Related Models, 15, 1017-1173.[CrossRef]
|
|
[26]
|
Coghi, M., Deuschel, J., Friz, P.K. and Maurelli, M. (2020) Pathwise Mckean-Vlasov Theory
with Additive Noise. The Annals of Applied Probability, 30, 2355-2392.[CrossRef]
|
|
[27]
|
Tanaka, H. (1984) Limit Theorems for Certain Diffusion Processes with Interaction. In: North-
Holland Mathematical Library, Elsevier, 469-488. [Google Scholar] [CrossRef]
|
|
[28]
|
Bailleul, I., Catellier, R. and Delarue, F. (2020) Solving Mean Field Rough Differential Equations.
Electronic Journal of Probability, 25, 1-51. [Google Scholar] [CrossRef]
|
|
[29]
|
Bailleul, I., Catellier, R. and Delarue, F. (2021) Propagation of Chaos for Mean Field Rough
Differential Equations. The Annals of Probability, 49, 944-996.[CrossRef]
|
|
[30]
|
Tsybakov, A.B. (2008) Introduction to Nonparametric Estimation. Springer Science & Business
Media.
|