分数交互粒子系统的非参数估计
Nonparametric Estimation for FractionalInteracting Particle Systems
摘要: 在本文中,我们考虑以下交互粒子系统的非参数估计问题: dXtθ,i,N=∑m=1pθi,mbm(Xtθ,i,N,μtθ,N)dt+σdBtH,i,i=1,...,N,t∈[0,T],
Abstract: 其初始分布为L(X0θ,1,N,...,X0θ,N,N)。其中θi=(θi,1i,p)为未知参数向量,过程(BtH,i)t∈[0,T],i=1,...,N是独立的实值 Hurst系数为H ∈(1/2,1)的分数布朗运动,且与系统的初始值(X0θ,1,N,...,X0θ,N,N)相互独立,σ > 0为波动率参数,μtθ,N为系统在时刻t的经验测度。我们采用矩估计方法分别得到∑m=1pθi,mbm(Xtθ,i,N, μtθ,N)(定理1.1)、θi(i = 1,...,N)(定理1.2)以及θi(i= 1,.....N)的公共密度函数f(定理1.3)的估计量。研究结果表明,收敛速率同时依赖于分数布朗运动的 Hurst系数H与噪声参数σ。In this paper, we consider the nonparametric estimation for the following interacting particle system, dXtθ,i,N=∑m=1pθi,mbm(Xtθ,i,N,μtθ,N)dt+σdBtH,i,i=1,...,N,t∈[0,T], with initial distribution L(X0θ,1,N,...,X0θ,N,N),where θi=(θi,1i,p) is an unknown parameter vector, the processes (BtH,i)t∈[0,T],i=1,...,N, are independent ℝ-valued fractional Brownian motions of Hurst index H ∈(1/2,1),independent of the initial value (X0θ,1,N,...,X0θ,N,N)of the system, σ > 0 is a volatility parameter, and μtθ,N is the empirical measure of the system at time t. We use the moment method to obtain the estimators for ∑m=1pθi,mbm(Xtθ,i,N, μtθ,N)(Theorem1.1)、θi(i = 1,...,N)(Theorem 1.2)and the common density function f of θi(i= 1,.....N)(Theorem 1.3).Our results demonstrate that the convergence rates depend on both the Hurst index H of the fBm and the noise parameter σ.
文章引用:刘同轩. 分数交互粒子系统的非参数估计[J]. 理论数学, 2025, 15(11): 196-213. https://doi.org/10.12677/PM.2025.1511281

参考文献

[1] Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., et al. (2019) Vehicular Traffic, Crowds, and Swarms: From Kinetic Theory and Multiscale Methods to Applications and Research Perspectives. Mathematical Models and Methods in Applied Sciences, 29, 1901- 2005.[CrossRef
[2] Muntean, A. and Toschi, F., Eds. (2014) Collective Dynamics from Bacteria to Crowds: An Excursion through Modeling, Analysis and Simulation (Vol. 553). Springer Science & Business Media.
[3] Naldi, G., Pareschi, L. and Toscani, G. (2010) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Springer Science & Business Media.
[4] Chizat, L. and Bach, F. (2018) On the Global Convergence of Gradient Descent for Overparameterized Models Using Optimal Transport. Advances in Neural Information Processing Systems, 31.
[5] Rotskoff, G. and Vanden-Eijnden, E. (2022) Trainability and Accuracy of Artificial Neural Networks: An Interacting Particle System Approach. Communications on Pure and Applied Mathematics, 75, 1889-1935.[CrossRef
[6] Carrillo, J.A., Jin, S., Li, L. and Zhu, Y. (2021) A Consensus-Based Global Optimization Method for High Dimensional Machine Learning Problems. ESAIM: Control, Optimisation and Calculus of Variations, 27, S5.[CrossRef
[7] Grassi, S. and Pareschi, L. (2021) From Particle Swarm Optimization to Consensus Based Optimization: Stochastic Modeling and Mean-Field Limit. Mathematical Models and Methods in Applied Sciences, 31, 1625-1657.[CrossRef
[8] Totzeck, C. (2021) Trends in Consensus-Based Optimization. In: Bellomo, N., Carrillo, J.A. and Tadmor, E., Eds., Modeling and Simulation in Science, Engineering and Technology, Springer International Publishing, 201-226. [Google Scholar] [CrossRef
[9] Comte, F., Coutin, L. and Renault, E. (2010) Affine Fractional Stochastic Volatility Models. Annals of Finance, 8, 337-378. [Google Scholar] [CrossRef
[10] Chronopoulou, A. and Viens, F.G. (2010) Estimation and Pricing under Long-Memory Stochastic Volatility. Annals of Finance, 8, 379-403.[CrossRef
[11] Eftaxias, K., Contoyiannis, Y., Balasis, G., Karamanos, K., Kopanas, J., Antonopoulos, G., et al. (2008) Evidence of Fractional-Brownian-Motion-Type Asperity Model for Earthquake Generation in Candidate Pre-Seismic Electromagnetic Emissions. Natural Hazards and Earth System Sciences, 8, 657-669.[CrossRef
[12] Norros, I. (1995) On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks. IEEE Journal on Selected Areas in Communications, 13, 953-962.[CrossRef
[13] Lai, D., Davis, B.R. and Hardy, R.J. (2000) Fractional Brownian Motion and Clinical Trials. Journal of Applied Statistics, 27, 103-108. [Google Scholar] [CrossRef
[14] Amorino, C., Belomestny, D., Pilipauskaitė, V., Podolskij, M. and Zhou, S. (2024) Polynomial Rates via Deconvolution for Nonparametric Estimation in Mckean-Vlasov SDEs. Probability Theory and Related Fields, 193, 539-584.[CrossRef
[15] Belomestny, D., Pilipauskaitė, V. and Podolskij, M. (2023) Semiparametric Estimation of Mckean-Vlasov Sdes. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 59, 79-96.[CrossRef
[16] Della Maestra, L. and Hoffmann, M. (2021) Nonparametric Estimation for Interacting Particle Systems: Mckean-Vlasov Models. Probability Theory and Related Fields, 182, 551-613.[CrossRef
[17] Amorino, C., Heidari, A., Pilipauskaitė, V. and Podolskij, M. (2023) Parameter Estimation of Discretely Observed Interacting Particle Systems. Stochastic Processes and Their Applications, 163, 350-386.[CrossRef
[18] Bishwal, J.P.N. (2011) Estimation in Interacting Diffusions: Continuous and Discrete Sampling. Applied Mathematics, 2, 1154-1158. [Google Scholar] [CrossRef
[19] Genon-Catalot, V. and Larédo, C. (2021) Parametric Inference for Small Variance and Long Time Horizon Mckean-Vlasov Diffusion Models. Electronic Journal of Statistics, 15, 5811-5854.[CrossRef
[20] Genon-Catalot, V. and Larédo, C. (2021) Probabilistic Properties and Parametric Inference of Small Variance Nonlinear Self-Stabilizing Stochastic Differential Equations. Stochastic Processes and Their Applications, 142, 513-548.[CrossRef
[21] Amorino, C., Nourdin, I. and Shevchenko, R. (2025) Fractional Interacting Particle System: Drift Parameter Estimation via Malliavin Calculus. arXiv:2502.06514v2 [math.ST]
[22] Mandelbrot, B.B. and Van Ness, J.W. (1968) Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10, 422-437.[CrossRef
[23] Hu, Y. (2016) Analysis on Gaussian Spaces. World Scientific. [Google Scholar] [CrossRef
[24] Chaintron, L. and Diez, A. (2022) Propagation of Chaos: A Review of Models, Methods and Applications. I. Models and Methods. Kinetic and Related Models, 15, 895-1015.[CrossRef
[25] Chaintron, L. and Diez, A. (2022) Propagation of Chaos: A Review of Models, Methods and Applications. II. Applications. Kinetic and Related Models, 15, 1017-1173.[CrossRef
[26] Coghi, M., Deuschel, J., Friz, P.K. and Maurelli, M. (2020) Pathwise Mckean-Vlasov Theory with Additive Noise. The Annals of Applied Probability, 30, 2355-2392.[CrossRef
[27] Tanaka, H. (1984) Limit Theorems for Certain Diffusion Processes with Interaction. In: North- Holland Mathematical Library, Elsevier, 469-488. [Google Scholar] [CrossRef
[28] Bailleul, I., Catellier, R. and Delarue, F. (2020) Solving Mean Field Rough Differential Equations. Electronic Journal of Probability, 25, 1-51. [Google Scholar] [CrossRef
[29] Bailleul, I., Catellier, R. and Delarue, F. (2021) Propagation of Chaos for Mean Field Rough Differential Equations. The Annals of Probability, 49, 944-996.[CrossRef
[30] Tsybakov, A.B. (2008) Introduction to Nonparametric Estimation. Springer Science & Business Media.