|
[1]
|
Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. [Google Scholar] [CrossRef]
|
|
[2]
|
Jin, M., Jiu, Q. and Xie, Y. (2024) Global Well-Posedness and Optimal Decay for Incompressible
MHD Equations with Fractional Dissipation and Magnetic Diffusion. Zeitschrift fur
angewandte Mathematik und Physik, 75, Article No. 73.[CrossRef]
|
|
[3]
|
Ye, Z. and Zhao, X. (2018) Global Well-Posedness of the Generalized Magnetohydrodynamic
Equations. Zeitschrift fur angewandte Mathematik und Physik, 69, Article No. 126.[CrossRef]
|
|
[4]
|
Ye, Z. (2015) Global Well-Posedness and Decay Results to 3D Generalized Viscous Magnetohydrodynamic
Equations. Annali di Matematica Pura ed Applicata, 195, 1111-1121.[CrossRef]
|
|
[5]
|
Danchin, R. and Paicu, M. (2008) Existence and Uniqueness Results for the Boussinesq System
with Data in Lorentz Spaces. Physica D: Nonlinear Phenomena, 237, 1444-1460.[CrossRef]
|
|
[6]
|
Hou, T.Y. and Li, C.M. (2005) Global Well-Posedness of the Viscous Boussinesq Equations.
Discrete & Continuous Dynamical Systems-A, 12, 1-12. [Google Scholar] [CrossRef]
|
|
[7]
|
Karch, G. and Prioux, N. (2007) Self-Similarity in Viscous Boussinesq Equations. Proceedings
of the American Mathematical Society, 136, 879-888. [Google Scholar] [CrossRef]
|
|
[8]
|
Sun, J., Li, N. and Fu, S. (2025) Global Solutions of 3D Boussinesq Equations for Rotating
Stratified Fluids. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 112.[CrossRef]
|
|
[9]
|
Babin, A., Mahalov, A. and Nicolaenko, B. (1999) On the Regularity of Three-Dimensional
Rotating Euler-Boussinesq Equations. Mathematical Models and Methods in Applied Sciences,
9, 1089-1121.[CrossRef]
|
|
[10]
|
Aurazo-Alvarez, L.L. and Ferreira, L.C.F. (2021) Global Well-Posedness for the Fractional
Boussinesq-Coriolis System with Stratification in a Framework of Fourier-Besov Type. Partial
Differential Equations and Applications, 2, Article No. 62.[CrossRef]
|
|
[11]
|
Wu, Y.L., Sun, X.C. and Xu, G.T. (2023) Global Well-Posedness for the 3D Rotating Boussinesq
Equations in Variable Exponent Fourier-Besov Spaces. Authorea Preprints.
|
|
[12]
|
Bian, D. and Liu, J. (2017) Initial-Boundary Value Problem to 2D Boussinesq Equations for
MHD Convection with Stratification Effects. Journal of Differential Equations, 263, 8074-8101.[CrossRef]
|
|
[13]
|
Guo, Z., Zhang, Z. and Zhao, C. (2024) Global Regularity Criteria of the 3D MHD-Boussinesq
Equations without Thermal Diffusion. Communications in Mathematical Sciences, 22, 1347-
1360.[CrossRef]
|
|
[14]
|
Liu, H., Lin, L. and Sun, C.F. (2025) Global Strong Solution of 3D Temperature-Dependent
Incompressible MHD-Boussinesq Equations with Fractional Dissipation. Acta Mathematica
Scientia, 45, 418-433.
|
|
[15]
|
Wang, Z., Liu, H., Cao, L. and Dong, F. (2025) Global Well-Posedness to the 3-D Inhomogeneous
Incompressible MHD-Boussinesq Equations with Vacuum. Zeitschrift fur angewandte
Mathematik und Physik, 76, Article No. 115.[CrossRef]
|
|
[16]
|
Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes
Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et
Appliquees, 100, 166-203.[CrossRef]
|
|
[17]
|
Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial
Differential Equations. Springer-Verlag.
|
|
[18]
|
Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical
Besov Spaces. Nonlinear Analysis: Theory, Methods & Applications, 72, 3173-3189.[CrossRef]
|
|
[19]
|
买园伟,孙晋易,牟晓彤.三维广义旋转磁流体力学方程组在Besov空间中的整体适定性[J].应用数学学报,2025.
|
|
[20]
|
Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations
in the Rotational Framework. Advances in Differential Equations, 19, 857-878.[CrossRef]
|
|
[21]
|
Hmidi, T. and Keraani, S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic
Equation in Besov Spaces. Advances in Mathematics, 214, 618-638.[CrossRef]
|
|
[22]
|
Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. [Google Scholar] [CrossRef]
|
|
[23]
|
Ye, Z. and Zhao, X. (2018) Global Well-Posedness of the Generalized Magnetohydrodynamic
Equations. Zeitschrift fur angewandte Mathematik und Physik, 69, Article No. 126.[CrossRef]
|
|
[24]
|
Ye, Z. (2015) Global Well-Posedness and Decay Results to 3D Generalized Viscous Magnetohydrodynamic
Equations. Annali di Matematica Pura ed Applicata, 195, 1111-1121.[CrossRef]
|
|
[25]
|
Danchin, R. and Paicu, M. (2008) Existence and Uniqueness Results for the Boussinesq System
with Data in Lorentz Spaces. Physica D: Nonlinear Phenomena, 237, 1444-1460.[CrossRef]
|
|
[26]
|
Hou, T.Y. and Li, C.M. (2005) Global Well-Posedness of the Viscous Boussinesq Equations.
Discrete & Continuous Dynamical Systems-A, 12, 1-12. [Google Scholar] [CrossRef]
|
|
[27]
|
Karch, G. and Prioux, N. (2007) Self-Similarity in Viscous Boussinesq Equations. Proceedings
of the American Mathematical Society, 136, 879-888. [Google Scholar] [CrossRef]
|
|
[28]
|
Sun, J., Li, N. and Fu, S. (2025) Global Solutions of 3D Boussinesq Equations for Rotating
Stratified Fluids. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 112.[CrossRef]
|
|
[29]
|
Babin, A., Mahalov, A. and Nicolaenko, B. (1999) On the Regularity of Three-Dimensional
Rotating Euler-Boussinesq Equations. Mathematical Models and Methods in Applied Sciences,
9, 1089-1121.[CrossRef]
|
|
[30]
|
Aurazo-Alvarez, L.L. and Ferreira, L.C.F. (2021) Global Well-Posedness for the Fractional
Boussinesq-Coriolis System with Stratification in a Framework of Fourier-Besov Type. Partial
Differential Equations and Applications, 2, Article No. 62.[CrossRef]
|
|
[31]
|
Wu, Y.L., Sun, X.C. and Xu, G.T. (2023) Global Well-Posedness for the 3D Rotating Boussinesq
Equations in Variable Exponent Fourier-Besov Spaces. Authorea Preprints.
|
|
[32]
|
Bian, D. and Liu, J. (2017) Initial-Boundary Value Problem to 2D Boussinesq Equations for
MHD Convection with Stratification Effects. Journal of Differential Equations, 263, 8074-8101.[CrossRef]
|
|
[33]
|
Guo, Z., Zhang, Z. and Zhao, C. (2024) Global Regularity Criteria of the 3D MHD-Boussinesq
Equations without Thermal Diffusion. Communications in Mathematical Sciences, 22, 1347-
1360.[CrossRef]
|
|
[34]
|
Liu, H., Lin, L. and Sun, C.F. (2025) Global Strong Solution of 3D Temperature-Dependent
Incompressible MHD-Boussinesq Equations with Fractional Dissipation. Acta Mathematica
Scientia, 45, 418-433.
|
|
[35]
|
Wang, Z., Liu, H., Cao, L. and Dong, F. (2025) Global Well-Posedness to the 3-D Inhomogeneous
Incompressible MHD-Boussinesq Equations with Vacuum. Zeitschrift fur angewandte
Mathematik und Physik, 76, Article No. 115.[CrossRef]
|
|
[36]
|
Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes
Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et
Appliquees, 100, 166-203.[CrossRef]
|
|
[37]
|
Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial
Differential Equations. Springer-Verlag.
|
|
[38]
|
Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical
Besov Spaces. Nonlinear Analysis: Theory, Methods & Applications, 72, 3173-3189.[CrossRef]
|
|
[39]
|
买园伟,孙晋易,牟晓彤.三维广义旋转磁流体力学方程组在Besov空间中的整体适定性[J].应用数学学报,2025.
|
|
[40]
|
Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations
in the Rotational Framework. Advances in Differential Equations, 19, 857-878.[CrossRef]
|
|
[41]
|
Hmidi, T. and Keraani, S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic
Equation in Besov Spaces. Advances in Mathematics, 214, 618-638.[CrossRef]
|