三维分数阶MHD-Boussinesq方程组在Besov空间中整体解的存在性
Global Existence of Solutions to the Three-Dimensional MHD-BoussinesqEquations in Besov Spaces
DOI: 10.12677/PM.2025.1511283, PDF,    国家自然科学基金支持
作者: 俞润芝:西北师范大学数学与统计学院,甘肃兰州
关键词: MHD-Boussinesq方程组Besov空间整体解MHD-Boussinesq Equations Besov Spaces Global Solutions
摘要: 三维 MHD-Boussinesq方程组描述了导电流体中速度场与磁场相互作用的动力学现象,在地球物理学中有着十分重要的应用。通过建立相应的线性和双线性估计,证明了当初值在Besov空间中满足一定的小性条件时,三维 MHD-Boussinesq方程组存在唯一的整体解。值得一提的是当旋转速度足够快时,允许初始速度任意大。
Abstract: The three-dimensional MHD-Boussinesq equations describe the dynamic phenomena of the interaction between the velocity field and the magnetic field in a conducting fluid, and have very important applications in geophysics. By establishing the corresponding linear and bilinear estimates, we proved that when the initial data sat- isfy certain smallness conditions in the Besov Spaces, the three-dimensional MHD- Boussinesq equations admit a unique global solution. It is worth mentioning that when the rotation speed is sufficiently fast, the initial velocity is allowed to be arbitrarily large.
文章引用:俞润芝. 三维分数阶MHD-Boussinesq方程组在Besov空间中整体解的存在性[J]. 理论数学, 2025, 15(11): 220-232. https://doi.org/10.12677/PM.2025.1511283

参考文献

[1] Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. [Google Scholar] [CrossRef
[2] Jin, M., Jiu, Q. and Xie, Y. (2024) Global Well-Posedness and Optimal Decay for Incompressible MHD Equations with Fractional Dissipation and Magnetic Diffusion. Zeitschrift fur angewandte Mathematik und Physik, 75, Article No. 73.[CrossRef
[3] Ye, Z. and Zhao, X. (2018) Global Well-Posedness of the Generalized Magnetohydrodynamic Equations. Zeitschrift fur angewandte Mathematik und Physik, 69, Article No. 126.[CrossRef
[4] Ye, Z. (2015) Global Well-Posedness and Decay Results to 3D Generalized Viscous Magnetohydrodynamic Equations. Annali di Matematica Pura ed Applicata, 195, 1111-1121.[CrossRef
[5] Danchin, R. and Paicu, M. (2008) Existence and Uniqueness Results for the Boussinesq System with Data in Lorentz Spaces. Physica D: Nonlinear Phenomena, 237, 1444-1460.[CrossRef
[6] Hou, T.Y. and Li, C.M. (2005) Global Well-Posedness of the Viscous Boussinesq Equations. Discrete & Continuous Dynamical Systems-A, 12, 1-12. [Google Scholar] [CrossRef
[7] Karch, G. and Prioux, N. (2007) Self-Similarity in Viscous Boussinesq Equations. Proceedings of the American Mathematical Society, 136, 879-888. [Google Scholar] [CrossRef
[8] Sun, J., Li, N. and Fu, S. (2025) Global Solutions of 3D Boussinesq Equations for Rotating Stratified Fluids. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 112.[CrossRef
[9] Babin, A., Mahalov, A. and Nicolaenko, B. (1999) On the Regularity of Three-Dimensional Rotating Euler-Boussinesq Equations. Mathematical Models and Methods in Applied Sciences, 9, 1089-1121.[CrossRef
[10] Aurazo-Alvarez, L.L. and Ferreira, L.C.F. (2021) Global Well-Posedness for the Fractional Boussinesq-Coriolis System with Stratification in a Framework of Fourier-Besov Type. Partial Differential Equations and Applications, 2, Article No. 62.[CrossRef
[11] Wu, Y.L., Sun, X.C. and Xu, G.T. (2023) Global Well-Posedness for the 3D Rotating Boussinesq Equations in Variable Exponent Fourier-Besov Spaces. Authorea Preprints.
[12] Bian, D. and Liu, J. (2017) Initial-Boundary Value Problem to 2D Boussinesq Equations for MHD Convection with Stratification Effects. Journal of Differential Equations, 263, 8074-8101.[CrossRef
[13] Guo, Z., Zhang, Z. and Zhao, C. (2024) Global Regularity Criteria of the 3D MHD-Boussinesq Equations without Thermal Diffusion. Communications in Mathematical Sciences, 22, 1347- 1360.[CrossRef
[14] Liu, H., Lin, L. and Sun, C.F. (2025) Global Strong Solution of 3D Temperature-Dependent Incompressible MHD-Boussinesq Equations with Fractional Dissipation. Acta Mathematica Scientia, 45, 418-433.
[15] Wang, Z., Liu, H., Cao, L. and Dong, F. (2025) Global Well-Posedness to the 3-D Inhomogeneous Incompressible MHD-Boussinesq Equations with Vacuum. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 115.[CrossRef
[16] Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et Appliquees, 100, 166-203.[CrossRef
[17] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag.
[18] Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical Besov Spaces. Nonlinear Analysis: Theory, Methods & Applications, 72, 3173-3189.[CrossRef
[19] 买园伟,孙晋易,牟晓彤.三维广义旋转磁流体力学方程组在Besov空间中的整体适定性[J].应用数学学报,2025.
[20] Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations in the Rotational Framework. Advances in Differential Equations, 19, 857-878.[CrossRef
[21] Hmidi, T. and Keraani, S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces. Advances in Mathematics, 214, 618-638.[CrossRef
[22] Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. [Google Scholar] [CrossRef
[23] Ye, Z. and Zhao, X. (2018) Global Well-Posedness of the Generalized Magnetohydrodynamic Equations. Zeitschrift fur angewandte Mathematik und Physik, 69, Article No. 126.[CrossRef
[24] Ye, Z. (2015) Global Well-Posedness and Decay Results to 3D Generalized Viscous Magnetohydrodynamic Equations. Annali di Matematica Pura ed Applicata, 195, 1111-1121.[CrossRef
[25] Danchin, R. and Paicu, M. (2008) Existence and Uniqueness Results for the Boussinesq System with Data in Lorentz Spaces. Physica D: Nonlinear Phenomena, 237, 1444-1460.[CrossRef
[26] Hou, T.Y. and Li, C.M. (2005) Global Well-Posedness of the Viscous Boussinesq Equations. Discrete & Continuous Dynamical Systems-A, 12, 1-12. [Google Scholar] [CrossRef
[27] Karch, G. and Prioux, N. (2007) Self-Similarity in Viscous Boussinesq Equations. Proceedings of the American Mathematical Society, 136, 879-888. [Google Scholar] [CrossRef
[28] Sun, J., Li, N. and Fu, S. (2025) Global Solutions of 3D Boussinesq Equations for Rotating Stratified Fluids. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 112.[CrossRef
[29] Babin, A., Mahalov, A. and Nicolaenko, B. (1999) On the Regularity of Three-Dimensional Rotating Euler-Boussinesq Equations. Mathematical Models and Methods in Applied Sciences, 9, 1089-1121.[CrossRef
[30] Aurazo-Alvarez, L.L. and Ferreira, L.C.F. (2021) Global Well-Posedness for the Fractional Boussinesq-Coriolis System with Stratification in a Framework of Fourier-Besov Type. Partial Differential Equations and Applications, 2, Article No. 62.[CrossRef
[31] Wu, Y.L., Sun, X.C. and Xu, G.T. (2023) Global Well-Posedness for the 3D Rotating Boussinesq Equations in Variable Exponent Fourier-Besov Spaces. Authorea Preprints.
[32] Bian, D. and Liu, J. (2017) Initial-Boundary Value Problem to 2D Boussinesq Equations for MHD Convection with Stratification Effects. Journal of Differential Equations, 263, 8074-8101.[CrossRef
[33] Guo, Z., Zhang, Z. and Zhao, C. (2024) Global Regularity Criteria of the 3D MHD-Boussinesq Equations without Thermal Diffusion. Communications in Mathematical Sciences, 22, 1347- 1360.[CrossRef
[34] Liu, H., Lin, L. and Sun, C.F. (2025) Global Strong Solution of 3D Temperature-Dependent Incompressible MHD-Boussinesq Equations with Fractional Dissipation. Acta Mathematica Scientia, 45, 418-433.
[35] Wang, Z., Liu, H., Cao, L. and Dong, F. (2025) Global Well-Posedness to the 3-D Inhomogeneous Incompressible MHD-Boussinesq Equations with Vacuum. Zeitschrift fur angewandte Mathematik und Physik, 76, Article No. 115.[CrossRef
[36] Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et Appliquees, 100, 166-203.[CrossRef
[37] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag.
[38] Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical Besov Spaces. Nonlinear Analysis: Theory, Methods & Applications, 72, 3173-3189.[CrossRef
[39] 买园伟,孙晋易,牟晓彤.三维广义旋转磁流体力学方程组在Besov空间中的整体适定性[J].应用数学学报,2025.
[40] Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations in the Rotational Framework. Advances in Differential Equations, 19, 857-878.[CrossRef
[41] Hmidi, T. and Keraani, S. (2007) Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces. Advances in Mathematics, 214, 618-638.[CrossRef