基于差异化子句加权技术的MaxSAT问题局部搜索算法研究
Research on Local Search Algorithms for MaxSAT Problems Based on Differentiated Clause Weighting Techniques
DOI: 10.12677/CSA.2025.1512319, PDF,    科研立项经费支持
作者: 张彬, 赵英静, 赵凯文:南宁师范大学数学与统计学院,广西武鸣
关键词: 最大可满足性问题组合优化局部搜索(W)PMSMaximum Satisfiability Problem Combinatorial Optimization Local Search (W)PMS
摘要: 最大可满足性问题(Maximum Satisflability Problem,MaxSAT)是一类经典的组合优化问题,在理论计算机科学及人工智能领域中有着广泛应用。局部搜索作为求解MaxSAT的主流方法之一,已被广泛应用于各类MaxSAT问题的求解中。深入研究局部搜索的内部机制对推动MaxSAT求解具有重要作用。本研究首先详细介绍了求解MaxSAT问题局部搜索算法的研究进展、发展历程及主要框架。然后针对子句加权技术提出基于子句重要性差异化的加权思想, 即Diff-Weighting策略。在增加子句惩罚权重阶段,我们仅对拥有两个变元且不被满足的硬子句, 赋予2倍的硬惩罚权重增量,以及根据原始权重的大小动态调整不被满足软子句的软惩罚权重增量。 我们把Diff-Weighting思想融合到SATLike3.0和ImSATLike求解器中,得出DiSATLike3.0以 及DiImSATLike求解器。在近两届MaxSAT国际算法竞赛MaxSAT Evaluation 非完备组的所有(W)PMS实例上取得的实验结果表明,应用Diff-Weighting技术获得的改进算法,相对于原算法在成功求解实例的个数上,能够提升约10%至60%的性能,体现了基于子句重要性差异化的加权技术在求解(W)PMS问题时的有效性。
Abstract: The Maximum Satisfiability Problem (MaxSAT) is a classical combinatorial optimiza- tion problem with extensive applications in theoretical computer science and artificial intelligence. Local search is one of the mainstream approaches for solving MaxSAT and has been widely applied to various MaxSAT instances. A deep investigation into the internal mechanisms of local search is essential for advancing MaxSAT solving. This study first provides a comprehensive overview of the research progress, development history, and main algorithmic frameworks of local search algorithms for MaxSAT. Then, focusing on clause weighting techniques, we propose a novel weighting strategy based on the differentiation of clause importance, referred to as the Diff-Weighting strategy. Specifically, during the clause weight increment phase, we assign a doubled hard penalty weight increment only to unsatisfied hard clauses containing exactly two literals, and dynamically adjust the soft penalty weight increment for unsatisfied soft clauses based on their original weights. By integrating the Diff-Weighting strategy in- to the SATLike3.0 and ImSATLike solvers, we develop the new solvers DiSATLike3.0 and DiImSATLike. Experimental results on all (W)PMS instances from the incom- plete track of the last two MaxSAT Evaluations show that the improved algorithms incorporating Diff-Weighting achieve a performance improvement of approximately 10% to 60% in the number of successfully solved instances compared to the original algorithms, demonstrating the effectiveness of the clause importance-differentiated weighting technique in solving (W)PMS problems.
文章引用:张彬, 赵英静, 赵凯文. 基于差异化子句加权技术的MaxSAT问题局部搜索算法研究[J]. 计算机科学与应用, 2025, 15(12): 29-42. https://doi.org/10.12677/CSA.2025.1512319

参考文献

[1] [1] Unceta, I., Salbanya, B., Coll, J., Villaret, M. and Nin, J. (2024) Optimizing Resource Allocation in Home Care Services Using Maxsat. Cognitive Systens Research, 88, Article 101291. [Google Scholar] [CrossRef
[2] [2] Croella, A.L., Luteberget, B., Mannino, C. and Ventura, P. (2024) A MaxSAT Approach for Solving a New Dynamic Discretization Discovery Model for Train Rescheduling Problems. Computers e Operations Research, 167, Article 106679. [Google Scholar] [CrossRef
[3] [3] Fan, Y., Li, N., Li, C., Ma, Z., Latecki, L.J. and Su, K. (2017) Restart and Random Walk in Local Search for Maximum Vertex Weight Cliques with Evaluations in Clustering Aggrega-
[4] tion. Proceedings of the Twenty-Sizth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 622-630.[CrossRef
[5] [4] Wang, Y., Cai, S. and Yin, M. (2016) Two Efficient Local Search Algorithms for Maximum Weight Clique Problem. Proceedings of the AAAI Conference on Artificial Intelligence, 30, 805-811. [Google Scholar] [CrossRef
[6] [5] Chowdhary, K.R. (2025) Theory of Computation: Automata, Formal Languages, Computation and Complexity. Springer Nature Singapore, 571-597.
[7] [6] Jorgensen, S.F. (2025) On the Clique Covering Numbers of Johnson Graphs. Designs, Codes and Cryptography, 93, 3689-3705. [Google Scholar] [CrossRef
[8] [7]周慧思,欧阳丹彤,刘梦,等.一种结合结构特征求解诊断问题的PMS方法[J].中国科学:信息科 学,2019(6):685-697.
[9] [8]何琨,郑迥之.最大可满足性问题的算法研究综述[J].华中科技大学学报(自然科学版),2022, 50(2): 82-95.
[10] [9]徐振兴.最大可满足性问题的非完备及完备算法研究[D]:[博士学位论文].武汉:华中科技大学, 2022.
[11] [10] Jiang, Z., Sun, X., Wang, W., Zhou, S., Li, Q. and Da, L. (2025) Path Planning Method for Maritime Dynamic Target Search Based on Improved GBNN. Complex e Intelligent Systems, 11, Article No. 296. [Google Scholar] [CrossRef
[12] [11]庄思发,汪雨晴,罗娇,等.一种优化的模拟退火算法解背包问题的研究[J].电脑编程技巧与维 护,2023(11):53-56.
[13] [12]唐向阳.大学课程时间表问题的优化求解与应用研究[D]:[博士学位论文].武汉:华中师范大学, 2024.
[14] [13]亓祥波,王浩毅,王宏伟,等.求解PFSP的布谷鸟搜索算法研究进展[J].机械设计与制造, 2025(3): 178-182.
[15] [14]郭梦瑶,帅天平.最小化开放式变尺寸装箱问题的近似算法[J/OL].运筹学学报(中英文),1-11. http://kns.cnki.net/kcms/detail/31.1732.O1.20250113.1352.006.html, 2025-04-23.
[16] [15]李正峥,周乐来,任忠龙,等.具备局部搜索路径优化的多源路径规划算法[]/OL].控制工程, 1-14. 2025-04-23.[CrossRef
[17] [16] Jiang, Y.J., Kautz, H., Selman, B., et al. (1995) Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT. 1st International Joint Workshop on Artificial Intelligence and Operations Research, Timberline, 1-15.
[18] [17] Thornton, J., Bain, S., Sattar, A. and Pham, D.N. (2002) A Two Level Local Search for MAX-SAT Problems with Hard and Soft Constraints. In: Lecture Notes in Computer Science, Springer Berlin Heidelberg, 603-614. [Google Scholar] [CrossRef
[19] [18] Thornton, J. and Sattar, A. (1998) Dynamic Constraint Weighting for Over-Constrained Prob- lems. In: Lecture Notes in Computer Science, Springer Berlin Heidelberg, 377-388. [Google Scholar] [CrossRef
[20] [19] Cai, S., Luo, C., Thornton, J. and Su, K. (2014) Tailoring Local Search for Partial MaxSAT. Proceedings of the AAAI Conference on Artificial Intelligence, 28, 2623-2629. [Google Scholar] [CrossRef
[21] [20] Cai, S., Luo, C., Lin, J. and Su, K. (2016) New Local Search Methods for Partial MaxSAT. Artificial Intelligence, 240, 1-18. [Google Scholar] [CrossRef
[22] [21] Luo, C., Cai, S., Su, K. and Huang, W. (2017) CCEHC: An Efficient Local Search Algorithm for Weighted Partial Maximum Satisfiability (Extended Abstract). Proceedings of the TwentySixth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 5030-5034. [Google Scholar] [CrossRef
[23] [22] Lei, Z. and Cai, S. (2019) Nudist: An Efficient Local Search Algorithm for (Weighted) Partial MaxSAT. The Computer Journal, 63, 1321-1337. [Google Scholar] [CrossRef
[24] [23] Cai, S. and Lei, Z. (2020) Old Techniques in New Ways: Clause Weighting, Unit Propagation and Hybridization for Maximum Satisfiability. Artificial Intelligence, 287, Article 103354. [Google Scholar] [CrossRef
[25] [24] Zhang, Z., Zhou, J., Wang, X., Yang, H. and Fan, Y. (2022) Initial Solution Generation and Diversified Variable Picking in Local Search for (Weighted) Partial MaxSAT. Entropy, 24, Article 1846. [Google Scholar] [CrossRef