360阶单群同构于A6的初等群论证明
An Elementary Proof That a Simple Group of Order 360 Is Isomorphism to A6
DOI: 10.12677/PM.2014.41006, PDF, HTML,  被引量    国家自然科学基金支持
作者: 周 峰, 徐行忠, 廖 军, 刘合国:湖北大学数学系,武汉
关键词: Sylow定理单群A6ylow’s Theorem; Simple Group; A6
摘要: 仅用Sylow定理和最基本的置换计算证明了360阶单群一定同构于A6
Abstract: Only by using Sylows theorem and basic permutation computation, we prove that a simple group of order 360 is isomorphic toA6 .
文章引用:周峰, 徐行忠, 廖军, 刘合国. 360阶单群同构于A6的初等群论证明[J]. 理论数学, 2014, 4(1): 31-37. http://dx.doi.org/10.12677/PM.2014.41006

参考文献

[1] Isaacs, I.M. (2008) Finite group theory. American Mathematical Society, Providence.
[2] Huppert, B. (1967) Endliche gruppen. Springer-Verlag, Berlin-Heidelberg-New York.
[3] Smith, G. and Tabachnikova, O. (2000) Topics in group theory. Springer-Verlag, Berlin-Heidelberg-New York.
[4] 周峰, 徐涛, 刘合国 (2013) 660阶单群同构于PSL(2,11)的初等群论证明. 理论数学, 4, 241-243.
[5] Isaacs, I.M. (1976) Character theory of finite groups. Academic Press, New York.
[6] Rotman, J. (1994) An introduction to the theory of groups. Springer-Verlag, Berlin-Heidelberg-New York.
[7] Cole, F.N. (1893) Simple groups as far as order 660. American Journal of Mathematics, 15, 303-315.