学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 15 No. 12 (December 2025)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
避免模式的下降序列
Pattern Avoidance in Descent Sequences
DOI:
10.12677/PM.2025.1512293
,
PDF
,
,
,
被引量
作者:
王翠翠
:绍兴文理学院数理信息学院,浙江 绍兴
关键词:
下降序列
;
模式避免
;
Wilf-等价
;
双射
;
Descent Sequence
;
Pattern Avoidance
;
Wilf-Equivalence
;
Bijection
摘要:
下降序列是一类由非负整数组成的序列,序列中每个元素受限于其前缀的下降数。 本文借助结构 刻画、双射构造等方法,对下降序列中的模式避免问题展开研究,得到了长度至多为4的模式的相 关结果,井揭示了若干Wilf-等价关系。
Abstract:
A descent sequence is a class of sequences composed of non-negative integers, where each element is constrained by the number of descents in its prefix. In this paper, we study pattern avoidance in descent sequences by means of structural characterizationand bijective constructions. We obtain relevant results for patterns with length at most 4 and reveal several Wilf-equivalence relations.
文章引用:
王翠翠. 避免模式的下降序列[J]. 理论数学, 2025, 15(12): 48-57.
https://doi.org/10.12677/PM.2025.1512293
参考文献
[1]
Callan, D. (2019) On Ascent, Repetition and Descent Sequences.
https://arxiv.org/abs/1911.02209v1
[2]
Chan, J.H.C. (2015) An Innite Family of Inv-Wilf-Equivalent Permutation Pairs. European Journal of Combinatorics, 44, 57-76. [
Google Scholar
] [
CrossRef
]
[3]
Bloom, J. (2014) A Renement of Wilf-Equivalence for Patterns of Length 4. Journal of Com- binatorial Theory, Series A, 124, 166-177. [
Google Scholar
] [
CrossRef
]
[4]
OEIS Foundation Inc. (2011) The On-Line Encyclopedia of Integer Sequences.
http://oeis.org
[5]
Duncan, P. and Steingrimsson, E. (2011) Pattern Avoidance in Ascent Sequences. The Elec- tronic Journal of Combinatorics, 18, Article No. 226. [
Google Scholar
] [
CrossRef
]
[6]
Cerbai, G. (2024) Modified Ascent Sequences and Bell Numbers. The Electronic Journal of Combinatorics, 31, Article No. 4.31. [
Google Scholar
] [
CrossRef
]
[7]
Soykan, Y. (2020) Generalized Fibonacci Numbers: Sum Formulas. Journal of Advances in Mathematics and Computer Science, 35, 89-104. [
Google Scholar
] [
CrossRef
]
[8]
Krattenthaler, C. (2010) Determinants of (Generalised) Catalan Numbers. Journal of Statis- tical Planning and Inference, 140, 2260-2270. D [
Google Scholar
] [
CrossRef
]
投稿
为你推荐
友情链接
科研出版社
开放图书馆