无爪图中子图的度和与Hamilton连通性
The Hamilton-Connectivity with the Sum Degree of Subgraph in Claw-Free Graphs
DOI: 10.12677/AAM.2014.31002, PDF,  被引量    科研立项经费支持
作者: 米 晶, 王江鲁:山东师范大学数学科学学院,济南
关键词: 无爪图不相邻子图子图的度Hamilton路Claw-Free Graph; Non-Adjacent Subgraph; Degree of Subgraph; Hamilton-Path
摘要: 本文定义了子图的度的概念,并利用子图的度给出如下结果:设Gn2-连通无爪图,δ(G) 3,如果G中任意两个分别同构于P3K2的不相邻子图H1H2的度和,对于任意的u,v Î G,若{u,v}不构成割集,那么u,v间存在Hamilton路。
Abstract: In this paper, we defined the degree of subgraph, and got the following result on the basis of the degree of subgraph: Let G be a 2-connected claw-free graph of order n, . If H1 and H2, any two non-adjacent subgraphs, are isomorphic to P3 and K2, respectively, and d(H1) + d(H2) ≥ n, for each pair of u,v Î G, when {u,v} isnt a cut set, there exists a Hamilton-path in u,v.
文章引用:米晶, 王江鲁. 无爪图中子图的度和与Hamilton连通性[J]. 应用数学进展, 2014, 3(1): 8-16. http://dx.doi.org/10.12677/AAM.2014.31002

参考文献

[1] Bondy, J.A. and Murty, U.S.R. (1976) Graph theory with applications. Macmillan London and Elsevier, New York.
[2] Dirac, G.A. (1952) Some theorems on abstract graphs. Proceedings of the London Mathematical Society, 3, 269-281.
[3] Ore, O. (1960) Note on Hamilton circuits. American Mathematical Monthly, 67, 55.
[4] Matthews, M.M. and Summer, D.P. (1985) Longest paths and cycles in K1,3-free graphs. Graph Theory, 9, 269-277.
[5] Flandrin, E., Fournier, I. and Germa, A. (1988) Circumference and Hamiltonism in K1,3-free graphs. Annals of Discrete Mathematics, 41, 131-140.