一类 Kirchhoff 方程半正问题正解的存在性
The Existence of Positive Solutionsfor a Class of Kirchhoff EquationSemipositone Problem
DOI: 10.12677/PM.2025.1512294, PDF,    国家自然科学基金支持
作者: 杨喜艳:西北师范大学数学与统计学院,甘肃 兰州
关键词: 正解半正问题不动点定理Kirchhoff方程边值问题Positive Solution Semipositone Problem Fixed Point Theorem Kirchhoff Equations Boundary Value Problem
摘要: 考察了下列边值问题 { ( α + β u 2 ) u = λ f ( t , u ) ,     t ( r , R ) , u ( r ) = u ( R ) = 0 正解的存在性,其中 λ 为正参数,α > 0, β ≥ 0, f : [r, R] × [0, ∞) → ℝ为连续函数,且存在 M > 0 使得当 t ∈ [r, R] 时,f (t, u) ≥ −M。 运用 Krasnoselskii’s 不动点定理证明存在常数 λ0 > 0,使得当 0 < λ < λ0时, 该问题存在一个正解。
Abstract: We are concerned with the existence of positive solutions for boundary value problem { ( α + β u 2 ) u = λ f ( t , u ) ,     t ( r , R ) , u ( r ) = u ( R ) = 0 where λ > 0 is a parameter, α > 0, β ≥ 0, f : [r;R] × [0, ∞)→ ℝ is a continuous function and exists an M > 0 such that f(t, u) ≥ −M for t ∈ [r, R]. By applying Krasnoselskii's fixed point theorem, we proved that there exists λ0 > 0 such that the problem has a positive solution for 0 < λ < λ0.
文章引用:杨喜艳. 一类 Kirchhoff 方程半正问题正解的存在性[J]. 理论数学, 2025, 15(12): 58-68. https://doi.org/10.12677/PM.2025.1512294

参考文献

[1] Kirchoff, G. (1883) Mechanik. Teubner, Leipzig.
[2] Lions, J.L. (1978) On Some Questions in Boundary Value Problems of Mathematical Physics. In: North-Holland Mathematics Studies, Elsevier, 284-346. [Google Scholar] [CrossRef
[3] He, X. and Zou, W. (2009) Infinitely Many Positive Solutions for Kirchhoff-Type Problems. Nonlinear Analysis: Theory, Methods & Applications, 70, 1407-1414. [Google Scholar] [CrossRef
[4] D'Ancona, P. and Shibata, Y. (1994) On Global Solvability of NonViscoelastic Equations in the Analytic Category. Mathematical Methods in the Applied Sciences, 17, 477-486.[CrossRef
[5] Cavalcanti, M.M., Domingos Cavalcanti, V.N. and Soriano, J.A. (2001) Global Existence and Uniform Decay Rates for the Kirchhoff-Carrier Equation with Nonlinear Dissipation. Advances in Differential Equations, 6, 701-730.[CrossRef
[6] Li, F., Guan, C. and Li, Y. (2015) Positive Solutions to Some Equations with Homogeneous Operator. Journal of Mathematical Analysis and Applications, 422, 544-558.[CrossRef
[7] Heidarkhani, S., Afrouzi, G.A. and O'Regan, D. (2011) Existence of Three Solutions for a Kirchhoff-Type Boundary-Value Problem. Electronic Journal of Differential Equations, 2011, 1-11.
[8] Cheng, B. and Wu, X. (2009) Existence Results of Positive Solutions of Kirchhoff Type Problems. Nonlinear Analysis: Theory, Methods & Applications, 71, 4883-4892. [Google Scholar] [CrossRef
[9] Ambrosetti, A. and Arcoya, D. (2016) Positive Solutions of Elliptic Kirchhoff Equations. Ad- vanced Nonlinear Studies, 17, 3-15. [Google Scholar] [CrossRef
[10] Perera, K. and Zhang, Z. (2006) Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index. Journal of Differential Equations, 221, 246-255.[CrossRef
[11] Sun, J. and Tang, C. (2011) Existence and Multiplicity of Solutions for Kirchhoff Type Equations. Nonlinear Analysis: Theory, Methods & Applications, 74, 1212-1222. [Google Scholar] [CrossRef
[12] Zhang, X., Zhang, B. and Repovs, D. (2016) Existence and Symmetry of Solutions for Critical Fractional Schrodinger Equations with Bounded Potentials. Nonlinear Analysis, 142, 48-68.[CrossRef
[13] Cao, X.F. and Dai, G.W. (2018) Spectrum Global Bifurcation and Nodal Solutions to Kirchhoff-Type Equations. Electronic Journal of Differential Equations, 2018, 1-10.