|
[1]
|
Kermack, W.O. and McKendrick, A. G. (1927) A Contribution to the Mathematical Theory
of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 115, 700-721.
|
|
[2]
|
Korobeinikov, A. and Wake, G.C. (2002) Lyapunov Functions and Global Stability for SIR,
SIRS, and SIS Epidemiological Models. Applied Mathematics Letters, 15, 955-960.[CrossRef]
|
|
[3]
|
Korobeinikov, A. (2006) Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological
Models with Non-Linear Transmission. Bulletin of Mathematical Biology, 68, 615-626.[CrossRef]
|
|
[4]
|
Huang, G., Beretta, E. and Takeuchi, Y. (2012) Global Stability for Epidemic Model with
Constant Latency and Infectious Periods. Mathematical Biosciences and Engineering, 9, 297-
312.
|
|
[5]
|
McCluskey, C.C. (2010) Complete Global Stability for an SIR Epidemic Model with Delay|
Distributed or Discrete. Nonlinear Analysis: Real World Applications, 11, 55-59.[CrossRef]
|
|
[6]
|
Huang, G., Liu, A. and Forys, U. (2015) Global Stability Analysis of Some Nonlinear Delay
Differential Equations in Population Dynamics. Journal of Nonlinear Science, 26, 27-41.[CrossRef]
|
|
[7]
|
Huang, G., Liu, X. and Takeuchi, Y. (2012) Lyapunov Functions and Global Stability for
Age-Structured HIV Infection Model. SIAM Journal on Applied Mathematics, 72, 25-38.[CrossRef]
|
|
[8]
|
Magal, P., McCluskey, C.C. and Webb, G.F. (2010) Lyapunov Functional and Global Asymptotic
Stability for an Infection-Age Model. Applicable Analysis, 89, 1109-1140.[CrossRef]
|
|
[9]
|
Auger, P., de la Parra, R.B., Poggiale, J.C., Sanchez, E., Nguyen-Huu, T. (2008) Aggregation
of Variables and Applications to Population Dynamics. In: Magal, P. and Ruan, S., Eds.,
Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics,
Vol. 1936, Springer, 209-263. 5[CrossRef]
|
|
[10]
|
Hu, D., Farkas, J.Z. and Huang, G. (2024) Stability Results for a Hierarchical Size-Structured
Population Model with Distributed Delay. Nonlinear Analysis: Real World Applications, 76,
Article 103966.[CrossRef]
|
|
[11]
|
Musundi, B. (2021) An Immuno-Epidemiological Model Linking Between-Host and Within-
Host Dynamics of Cholera. arxiv:2105.12675
|
|
[12]
|
Martcheva, M. and Pilyugin, S.S. (2006) An Epidemic Model Structured by Host Immunity.
Journal of Biological Systems, 14, 185-203. [Google Scholar] [CrossRef]
|
|
[13]
|
Angelov, G., Kovacevic, R., Stilianakis, N.I. and Veliov, V.M. (2024) An Immuno-
Epidemiological Model withWaning Immunity after Infection or Vaccination. Journal of Math-
ematical Biology, 88, Article No. 71.[CrossRef]
|
|
[14]
|
Angulo, O., Milner, F. and Sega, L. (2013) A SIR Epidemic Model Structured by Immunological
Variables. Journal of Biological Systems, 21, Article 1340013.[CrossRef]
|
|
[15]
|
Meehan, M.T., Cocks, D.G., Mjller, J. and McBryde, E.S. (2019) Global Stability Properties
of a Class of Renewal Epidemic Models. Journal of Mathematical Biology, 78, 1713-1725.[CrossRef]
|
|
[16]
|
O'Regan, S.M., Kelly, T.C., Korobeinikov, A., O'Callaghan, M.J.A. and Pokrovskii, A.V.
(2010) Lyapunov Functions for SIR and SIRS Epidemic Models. Applied Mathematics Letters,
23, 446-448. [Google Scholar] [CrossRef]
|
|
[17]
|
Beretta, E., Hara, T., Ma, W. and Takeuchi, Y. (2001) Global Asymptotic Stability of an
SIR Epidemic Model with Distributed Time Delay. Nonlinear Analysis: Theory, Methods &
Applications, 47, 4107-4115.[CrossRef]
|
|
[18]
|
Gilbert, P.B., Montefiori, D.C., McDermott, A.B., Fong, Y., Benkeser, D., Deng, W., et al.
(2022) Immune Correlates Analysis of the mRNA-1273 COVID-19 Vaccine Effcacy Clinical
Trial. Science, 375, 43-50.[CrossRef]
|