测度神经网络的同步问题
Measure Neural Network Synchronization
DOI: 10.12677/AAM.2025.1412522, PDF,   
作者: 金 凡:浙江师范大学数学科学学院,浙江 金华
关键词: 同步李雅普诺夫定理测度Synchronization Lyapunov Theorem Measure
摘要: 本文提出了一种创新框架,用于分析神经网络中的同步问题。该框架采用测度微分方程 (MDEs), 能有效刻画实际系统固有的不连续特性和动态行为。由于测度函数的引入,以及系统不连续点的 存在,传统的同步分析方法需重新审视,并配以专门的计算手段。本研究的核心贡献在于,在测 度微分方程框架下建立了新的李雅普诺夫定理,据此为系统构造了与之相适应的李雅普诺夫函数。 这项工作不仅深化了对神经网络同步机理的理论认识,也彰显了测度理论在复杂网络分析中的重 要性。
Abstract: This paper proposes an innovative framework for analyzing synchronization in neu-ral networks by employing measure differential equations (MDEs), which effectively capture discontinuities and dynamic behaviors inherent in real-world systems. The incorporation of measure functions necessitates a re-evaluation of traditional synchro- nization analysis, as the presence of discontinuity points demands specialized compu- tational approaches. A key contribution of this work is the development of a new Lyapunov theorem within the MDE framework, which facilitates the construction of a tailored Lyapunov function for the system. This study advances the theoretical un- derstanding of synchronization in neural networks and underscores the significance of integrating measure theory into the analysis of complex networks.
文章引用:金凡. 测度神经网络的同步问题[J]. 应用数学进展, 2025, 14(12): 468-483. https://doi.org/10.12677/AAM.2025.1412522

参考文献

[1] Barabási, A. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512. [Google Scholar] [CrossRef
[2] Chen, G. and Dong, X. (1998) From Chaos to Order: Methodologies, Perspectives and Appli- cations. World Scientific. [Google Scholar] [CrossRef
[3] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002) Network Motifs: Simple Building Blocks of Complex Networks. Science, 298, 824-827. [Google Scholar] [CrossRef
[4] Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of ‘Small-World’ Networks. Nature, 393, 440-442. [Google Scholar] [CrossRef
[5] Moreno, Y. and Pacheco, A.F. (2004) Synchronization of Kuramoto Oscillators in Scale-Free Networks. Europhysics Letters (EPL), 68, 603-609. [Google Scholar] [CrossRef
[6] Yang, L. and Jiang, J. (2014) Adaptive Synchronization of Drive-Response Fractional-Order Complex Dynamical Networks with Uncertain Parameters. Communications in Nonlinear Sci- ence and Numerical Simulation, 19, 1496-1506. [Google Scholar] [CrossRef
[7] Wang, Y., Lu, J., Liang, J., Cao, J. and Perc, M. (2019) Pinning Synchronization of Nonlinear Coupled Lur’e Networks under Hybrid Impulses. IEEE Transactions on Circuits and Systems II: Express Briefs, 66, 432-436. [Google Scholar] [CrossRef
[8] Yang, X., Cao, J. and Liang, J. (2017) Exponential Synchronization of Memristive Neural Networks with Delays: Interval Matrix Method. IEEE Transactions on Neural Networks and Learning Systems, 28, 1878-1888. [Google Scholar] [CrossRef
[9] Rulkov, N.F., Sushchik, M.M., Tsimring, L.S. and Abarbanel, H.D.I. (1995) Generalized Syn- chronization of Chaos in Directionally Coupled Chaotic Systems. Physical Review E, 51, 980- 994. [Google Scholar] [CrossRef
[10] Restrepo, J.G., Ott, E. and Hunt, B.R. (2005) Onset of Synchronization in Large Networks of Coupled Oscillators. Physical Review E, 71, Article 036151. [Google Scholar] [CrossRef
[11] Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824. [Google Scholar] [CrossRef
[12] Cao, J. and Li, R. (2017) Fixed-Time Synchronization of Delayed Memristor-Based Recurrent Neural Networks. Science China Information Sciences, 60, Article No. 032201. [Google Scholar] [CrossRef
[13] Wang, H., Liu, P.X. and Liu, S. (2017) Adaptive Neural Synchronization Control for Bilateral Teleoperation Systems with Time Delay and Backlash-Like Hysteresis. IEEE Transactions on Cybernetics, 47, 3018-3026. [Google Scholar] [CrossRef
[14] Li, G. and Liu, H. (2016) Stability Analysis and Synchronization for a Class of Fractional-Order Neural Networks. Entropy, 18, Article 55. [Google Scholar] [CrossRef
[15] Liu, S. and Zhou, L. (2015) Network Synchronization and Application of Chaotic Lur’e Systems Based on Event-Triggered Mechanism. Nonlinear Dynamics, 83, 2497-2507. [Google Scholar] [CrossRef
[16] Liu, H., Chen, Y., Li, G., Xiang, W. and Xu, G. (2017) Adaptive Fuzzy Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems with Input Saturation and Unknown Pa- rameters. Complexity, 2017, Article 6853826. [Google Scholar] [CrossRef
[17] Chen, X., Cao, J., Park, J.H., Huang, T. and Qiu, J. (2018) Finite-Time Multi-Switching Synchronization Behavior for Multiple Chaotic Systems with Network Transmission Mode. Journal of the Franklin Institute, 355, 2892-2911. [Google Scholar] [CrossRef
[18] Boulkroune, A., Bouzeriba, A., Hamel, S. and Bouden, T. (2014) A Projective Synchroniza- tion Scheme Based on Fuzzy Adaptive Control for Unknown Multivariable Chaotic Systems. Nonlinear Dynamics, 78, 433-447. [Google Scholar] [CrossRef
[19] Huang, C. and Cao, J. (2017) Active Control Strategy for Synchronization and Anti- Synchronization of a Fractional Chaotic Financial System. Physica A: Statistical Mechanics and Its Applications, 473, 262-275. [Google Scholar] [CrossRef
[20] Chen, X., Qiu, J., Cao, J. and He, H. (2016) Hybrid Synchronization Behavior in an Array of Coupled Chaotic Systems with Ring Connection. Neurocomputing, 173, 1299-1309. [Google Scholar] [CrossRef
[21] Chen, X., Park, J.H., Cao, J. and Qiu, J. (2017) Sliding Mode Synchronization of Multiple Chaotic Systems with Uncertainties and Disturbances. Applied Mathematics and Computation, 308, 161-173. [Google Scholar] [CrossRef
[22] Yu, W., Chen, G., Lü, J. and Kurths, J. (2013) Synchronization via Pinning Control on General Complex Networks. SIAM Journal on Control and Optimization, 51, 1395-1416. [Google Scholar] [CrossRef
[23] Yang, X. and Cao, J. (2009) Stochastic Synchronization of Coupled Neural Networks with Intermittent Control. Physics Letters A, 373, 3259-3272. [Google Scholar] [CrossRef
[24] Cheng, L., Chen, X., Qiu, J., Lu, J. and Cao, J. (2018) Aperiodically Intermittent Control for Synchronization of Switched Complex Networks with Unstable Modes via Matrix ω-Measure Approach. Nonlinear Dynamics, 92, 1091-1102. [Google Scholar] [CrossRef
[25] Schmaedeke, W.W. (1965) Optimal Control Theory for Nonlinear Vector Differential Equations Containing Measures. Journal of the Society for Industrial and Applied Mathematics Series A Control, 3, 231-280. [Google Scholar] [CrossRef
[26] Yang, T. (2001) Impulsive Systems and Control: Theory and Applications. New York Nova Science Publishers, Inc.
[27] Liu, J., Hu, J. and Yuen, P. (2020) Extinction and Permanence of the Predator-Prey System with General Functional Response and Impulsive Control. Applied Mathematical Modelling, 88, 55-67. [Google Scholar] [CrossRef
[28] Ning, C., He, Y., Wu, M. and Zhou, S. (2018) Indefinite Lyapunov Functions for Input-to-State Stability of Impulsive Systems. Information Sciences, 436, 343-351. [Google Scholar] [CrossRef
[29] Liu, B. (2008) Stability of Solutions for Stochastic Impulsive Systems via Comparison Ap- proach. IEEE Transactions on Automatic Control, 53, 2128-2133. [Google Scholar] [CrossRef
[30] Huang, T., Li, C., Duan, S. and Starzyk, J.A. (2012) Robust Exponential Stability of Un- certain Delayed Neural Networks with Stochastic Perturbation and Impulse Effects. IEEE Transactions on Neural Networks and Learning Systems, 23, 866-875. [Google Scholar] [CrossRef
[31] Heydari, A. (2021) Optimal Impulsive Control Using Adaptive Dynamic Programming and Its Application in Spacecraft Rendezvous. IEEE Transactions on Neural Networks and Learning Systems, 32, 4544-4552. [Google Scholar] [CrossRef
[32] Hui Ye„ Michel, A.N. and Ling Hou, (1998) Stability Theory for Hybrid Dynamical Systems. IEEE Transactions on Automatic Control, 43, 461-474. [Google Scholar] [CrossRef
[33] Wu, C.W. (2007) Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific. [Google Scholar] [CrossRef
[34] Jiang, B., Lou, J., Lu, J. and Shi, K. (2022) Synchronization of Chaotic Neural Network- s: Average-Delay Impulsive Control. IEEE Transactions on Neural Networks and Learning Systems, 33, 6007-6012. [Google Scholar] [CrossRef
[35] Li, Y., Niu, B., Zong, G., Zhao, J. and Zhao, X. (2021) Command Filter-Based Adaptive Neural Finite-Time Control for Stochastic Nonlinear Systems with Time-Varying Full-State Constraints and Asymmetric Input Saturation. International Journal of Systems Science, 53, 199-221. [Google Scholar] [CrossRef
[36] Zhang, G., Liu, Z. and Ma, Z. (2007) Synchronization of Complex Dynamical Networks via Impulsive Control. Chaos, 17, 043126.
[37] Lu, J., Ho, D.W.C. and Cao, J. (2010) A Unified Synchronization Criterion for Impulsive Dynamical Networks. Automatica, 46, 1215-1221. [Google Scholar] [CrossRef
[38] Li, X.D., Bohner, M. and Wang, C.-K. (2015) Impulsive Differential Equations: Periodic Solutions and Applications. Automatica, 52, 173-178. 2014.11.009 [Google Scholar] [CrossRef
[39] Ballinger, G. and Liu, X. (2000) Existence, Uniqueness and Boundedness Results for Impulsive Delay Differential Equations. Applicable Analysis, 74, 71-93. [Google Scholar] [CrossRef
[40] Acary, V., Brogliato, B. and Orlov, Y.V. (2012) Chattering-Free Digital Sliding-Mode Control with State Observer and Disturbance Rejection. IEEE Transactions on Automatic Control, 57, 1087-1101. [Google Scholar] [CrossRef
[41] Hespanha, J.P. and Morse, A.S. (2002) Switching between Stabilizing Controllers. Automatica, 38, 1905-1917. [Google Scholar] [CrossRef
[42] Zhou, J. and Chen, T. (2006) Synchronization in General Complex Delayed Dynamical Net- works. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 733-744. [Google Scholar] [CrossRef
[43] Cao, J. and Lu, J. (2006) Adaptive Synchronization of Neural Networks with or without Time- Varying Delay. Chaos, 16, Article 013133. [Google Scholar] [CrossRef
[44] Xu, Y. (1988) Functional Differential Equation and Measure Differential Equation. Zhongshan University Press.
[45] Das, P.C. and Sharma, R.R. (1972) Existence and Stability of Measure Differential Equations. Czechoslovak Mathematical Journal, 22, 145-158. [Google Scholar] [CrossRef
[46] Rudin, W. (1966) Real and Complex Analysis. McGraw-Hill.
[47] Hale, J. (1969) Ordinary Differential Equations. Wiley-Interscience.
[48] Hespanha, J.P., Liberzon, D. and Teel, A.R. (2008) Lyapunov Conditions for Input-to-State Stability of Impulsive Systems. Automatica, 44, 2735-2744. [Google Scholar] [CrossRef
[49] Wan, X. and Sun, J. (2012) Complete Controllability for Abstract Measure Differential Sys- tems. International Journal of Robust and Nonlinear Control, 23, 807-814. [Google Scholar] [CrossRef
[50] Antunes Monteiro, G. and Slavík, A. (2016) Extremal Solutions of Measure Differential Equa- tions. Journal of Mathematical Analysis and Applications, 444, 568-597. [Google Scholar] [CrossRef
[51] Cao, Y. and Sun, J. (2017) Controllability of Measure Driven Evolution Systems with Nonlocal Conditions. Applied Mathematics and Computation, 299, 119-126. [Google Scholar] [CrossRef
[52] Cao, Y. and Sun, J. (2018) Practical Stability of Nonlinear Measure Differential Equations. Nonlinear Analysis: Hybrid Systems, 30, 163-170. [Google Scholar] [CrossRef