具有随机初值的 Navier-Stokes Nernst-Planck-Poisson 方程在超临界 Sobolev 空间的适定性
The Well-Posedness for the Navier-Stokes Nernst-Planck-Poisson Equations with Random Initial Data in SupercriticalSobolev Space
DOI: 10.12677/AAM.2025.1412523, PDF,    国家自然科学基金支持
作者: 祝振凯, 郑云涵, 杜利怀:温州大学数理学院,浙江 温州;耿金波*:浙江师范大学数学科学学院,浙江 金华
关键词: 随机初值超临界 Sobolev 空间Navier-Stokes Nernst-Planck-Poisson 方程Random Initial Data Supercritical Sobolev Space Navier-Stokes Nernst-Planck-Poisson Equations
摘要: 本文考虑 d 维全空间上 Navier-Stokes Nernst-Planck-Poisson 方程的适定性问题。经过适当 的随机化后,我们获得了初值在超临界 Sobolev 空间中解的局部存在性和唯一性。此外,还建立 了全局解存在的概率估计。
Abstract: In this paper, we consider the problem of the Navier-Stokes Nernst-Planck-Poisson Equations on d-dimensional full space. After a suitable randomization, we obtain the local existence anduniqueness of the solution with the initial data in supercriti- cal Sobolev space. Furthermore, the probability estimate of global existence is also established.
文章引用:祝振凯, 郑云涵, 杜利怀, 耿金波. 具有随机初值的 Navier-Stokes Nernst-Planck-Poisson 方程在超临界 Sobolev 空间的适定性[J]. 应用数学进展, 2025, 14(12): 484-503. https://doi.org/10.12677/AAM.2025.1412523

参考文献

[1] Rubinstein, I. (1990) Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics. In: SIAM Studies in Applied Mathematics, SIAM.
[2] Lin, F. (2012) Some Analytical Issues for Elastic Complex Fluids. Communications on Pure and Applied Mathematics, 65, 893-919. [Google Scholar] [CrossRef
[3] Newman, J. and Thomas-Alyea, K.E. (2004) Electrochemical Systems. 3rd Edition, Wiley.
[4] Deng, C., Zhao, J. and Cui, S. (2010) Well-Posedness of a Dissipative Nonlinear Electrohydro- dynamic System in Modulation Spaces. Nonlinear Analysis: Theory, Methods Applications, 73, 2088-2100. [Google Scholar] [CrossRef
[5] Deng, C., Zhao, J. and Cui, S. (2011) Well-Posedness for the Navier-Stokes-Nernst-Planck- Poisson System in Triebel-Lizorkin Space and Besov Space with Negative Indices. Journal of Mathematical Analysis and Applications, 377, 392-405. [Google Scholar] [CrossRef
[6] Zhao, J., Deng, C. and Cui, S. (2010) Global Well-Posedness of a Dissipative System Arising in Electrohydrodynamics in Negative-Order Besov Spaces. Journal of Mathematical Physics, 51, Article 093101. [Google Scholar] [CrossRef
[7] Zhao, J., Deng, C. and Cui, S. (2011) Well-Posedness of a Dissipative System Modeling Elec- trohydrodynamics in Lebesgue Spaces. Differential Equations & Applications, 3, 427-448. [Google Scholar] [CrossRef
[8] Burq, N. and Tzvetkov, N. (2008) Random Data Cauchy Theory for Supercritical Wave Equa- tions I: Local Theory. Inventiones Mathematicae, 173, 449-475. [Google Scholar] [CrossRef
[9] Deng, Y. (2012) Two-Dimensional Nonlinear Schrödinger Equation with Random Radial Data. Analysis & PDE, 5, 913-960. [Google Scholar] [CrossRef
[10] Spitz, M. (2023) Almost Sure Local Wellposedness and Scattering for the Energy-Critical Cubic Nonlinear Schrödinger Equation with Supercritical Data. Nonlinear Analysis, 229, Article 113204. [Google Scholar] [CrossRef
[11] Thomann, L. (2009) Random Data Cauchy Problem for Supercritical Schrödinger Equations. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 26, 2385-2402. [Google Scholar] [CrossRef
[12] Lührmann, J. and Mendelson, D. (2014) Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on R3. Communications in Partial Differential Equations, 39, 2262- 2283. [Google Scholar] [CrossRef
[13] Lührmann, J. and Mendelson, D. (2016) On the Almost Sure Global Well-Posedness of Energy Sub-Critical Nonlinear Wave Equations on R3. New York Journal of Mathematics, 22, 209-227.
[14] Deng, C. and Cui, S. (2011) Random-Data Cauchy Problem for the Navier-Stokes Equations on T 3. Journal of Differential Equations, 251, 902-917. [Google Scholar] [CrossRef
[15] Zhang, T. and Fang, D. (2011) Random Data Cauchy Theory for the Incompressible Three Dimensional Navier-Stokes Equations. Proceedings of the American Mathematical Society, 139, 2827-2837. [Google Scholar] [CrossRef
[16] Dai, M. (2024) Almost Sure Existence of Global Weak Solutions for Supercritical Electron MHD. Discrete and Continuous Dynamical Systems—B, 29, 1584-1610. [Google Scholar] [CrossRef
[17] Dai, M. (2024) Almost Sure Well-Posedness for Hall MHD. Journal of Mathematical Fluid Mechanics, 26, Article No. 13. [Google Scholar] [CrossRef
[18] Du, L. and Zhang, T. (2017) Almost Sure Existence of Global Weak Solutions for Incompress- ible MHD Equations in Negative-Order Sobolev Space. Journal of Differential Equations, 263, 1611-1642. [Google Scholar] [CrossRef
[19] Wang, J. and Wang, K. (2017) Almost Sure Existence of Global Weak Solutions to the 3D Incompressible Navier-Stokes Equation. Discrete & Continuous Dynamical Systems—A, 37, 5003-5019. [Google Scholar] [CrossRef
[20] Tzvetkov, N. (2009) Construction of a Gibbs Measure Associated to the Periodic Benjamin- Ono Equation. Probability Theory and Related Fields, 146, 481-514. [Google Scholar] [CrossRef
[21] Miao, C., Yuan, B. and Zhang, B. (2008) Well-Posedness of the Cauchy Problem for the Fractional Power Dissipative Equations. Nonlinear Analysis: Theory, Methods & Applications, 68, 461-484. [Google Scholar] [CrossRef
[22] Bahouri, H., Chenmin, J.-Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Par- tial Differential Equations. In: Grundlehren der Mathematischen Wissenschaften, Vol. 343, Springer.