|
[1]
|
Cai, Y.D. and Chou, K.C. (2005) Using Functional Domain Composition To Predict Enzyme Family Classes. Journal of Proteome Research, 4, 109-111.
|
|
[2]
|
Cai, Y.D., Guo, P.Z. and Chou, K.C. (2005) Predicting Enzyme Family Classes by Hybridizing Gene Product Composition and Pseudo-Amino Acid Composition. Journal of Theoretical Biology, 234, 145-149.
|
|
[3]
|
Chou, K.C. and Cai, Y.D. (2004) Using GO-PseAA Predictor to Predict Enzyme Sub-Class. Biochemical and Biophysical Research Communications, 325, 506-507.
|
|
[4]
|
Shen, H.B. and Chou, K.C. (2007) EzyPred: A Top-Down Approach for Predicting Enzyme Functional Classes and Subclasses. Biochemical and Biophysical Research Communications, 364, 53-59.
|
|
[5]
|
Shi, R.J. and Hu, X.Z. (2010) Predicting Enzyme Subclasses by Using Support Vector Machine with Composite Vectors. Protein and Peptide Letters, 17, 599-604.
|
|
[6]
|
Hu, X.Z. and Ting, W. (2011) Prediction of Enzyme Subclass by Using Support Vector Machine Based on Improved Parameters. 2011 7th International Conference on Natural Computation, Shanghai, 26-28 July 2011, 593-598.
|
|
[7]
|
Wang, Y. and Hu, X.Z. (2011) Predicting of Oxidoreductase and Lyase Subclasses by Using Support Vector Machine. 2011 10th IEEE/ACIS International Conference on Computer and Information Science, Sanya, 16-18 May 2011, 2731.
|
|
[8]
|
Liu, X.X. and Hu, X.Z. (2011) Identifying the β-Hairpin Motifs in Enzymes by Using Support Vector Machine. 2011 10th IEEE/ACIS International Conference on Computer and Information Science, Sanya, 16-18 May 2011, 21-26.
|
|
[9]
|
Long, H.X. and Hu, X.Z. (2012) Prediction β-Hairpin Motifs in Enzyme Protein Using Three Methods. 2012 8th International Conference on Natural Computation (ICNC 2012), Chongqing, 29-31 May 2012, 570-574.
|
|
[10]
|
阎隆飞, 孙之荣 (1999) 蛋白质分子结构.清华大学出版社, 北京, 43-56.
|
|
[11]
|
Kuhn, M., Meiler, J. and Baker, D. (2004) Strand-Loop-Strand Motifs: Prediction of Hairpin and Diverging Turns in Proteins. Protein, 5, 282-288.
|
|
[12]
|
Cruz, X., Hutchinson, E.G., Shepherd, A., et al. (2002) Predicting Protein Topology: An Approach to Identifying Bhairpins. Proceedings of the National Academy of Sciences, 99, ll157-1l162.
|
|
[13]
|
Kumar, M., Bhasin, M., Natt, N.K., et al. (2005) BhairPred: Prediction of β-Hairpins in a Protein from Multiple Alignment Information Using ANN and SVM Techniques. Nucleic Acids Research, 33, 154-159.
|
|
[14]
|
胡秀珍, 李前忠 (2006) 用离散量的方法识别蛋白质的超二级结构. 生物物理学报, 6, 424-428.
|
|
[15]
|
Zou, D.S., He, Z.S., He, J.Y., et al. (2011) Supersecondary Structure Prediction Using Chou’s Pseudo Amino Acid Composition. Journal of Computational Chemistry, 32, 271-278.
|
|
[16]
|
Hu, X.Z. and Li, Q.Z. (2008) Prediction of the β-Hairpins in Proteins Using Support Vector Machine. The Protein Journal, 27, 115-122.
|
|
[17]
|
Hu, X.Z., Li, Q.Z. and Wang, C.L. (2010) Recognition of β-Hairpin Motifs in Proteins by Using the Composite Vector. Amino Acids, 38, 915-921.
|
|
[18]
|
Sun, L.X., Hu, X.Z. and Li, S.B. (2012) Predicting βαβ Motifs Based on SVM by Using the ID and MS Values. 2012 5th International Conference on BioMedical Engineering and Informatics (BMEI 2012), Chongqing, 16-18 October 2012, 910-914.
|
|
[19]
|
Wang, Z., Harkins, P.C., Ulevitch, R.J., Han, J.H., Cobb, M.H. and Goldsmith, E.J. (1997) The Structure of MitogenActivated Protein Kinase p38 at 2.1-Å Resolution. Proceedings of the National Academy of Sciences, 94, 2327-2332.
|
|
[20]
|
Batistic, O. and Kudla, J. (2004) Integration and Channeling of Calcium Signaling through the CBL Calcium Sensor/ CIPK Protein Kinase Network. Planta, 219, 915-924.
|
|
[21]
|
Webb, E.C. (1992) Enzyme Nomenclature. Academic Press, SanDiego.
|
|
[22]
|
Cartharius, K., Frech, K., Grote, K., et al. (2005) Mat Inspector and Beyond: Promoter Analysis Based on Transcription Factor Binding Sites. Bioinformatics, 21, 2933-2942.
|
|
[23]
|
Kel, A.E., GoBling, E., Reuter, I., et al. (2003) MATCHTM: A Tool for Searching Transcription Factor Binding Sites in DNA Sequences. Nucleic Acids Research, 31, 3576-3579.
|
|
[24]
|
Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer, New York.
|
|
[25]
|
Vapnik, V. (1998) Statistical Learning Theory. Wiley-Interscience, Hoboken
|
|
[26]
|
Hu, X.Z. and Li, Q.Z. (2008) Using Support Vector Machine to Predict β-Turns and γ-Turns in Proteins. Computational Chemistry, 29, 1867-1875.
|
|
[27]
|
Chou, K.C. and Cai, Y.D. (2002) Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. Journal of Biological Chemistry, 227, 45765-45769.
|
|
[28]
|
Ding, C.H.Q. and Dubchak, I. (2001) Multi-Class Protein Fold Recognition Using Support Vector Machines and Neural Networks. Bioinformatics, 17, 349-358.
|
|
[29]
|
Shi, J.Y., Pan, Z., Zhang, S.W. and Liang, Y. (2006) Protein Fold Recognition with Support Vector Machines Fusion Network. Progress in Biochemistry Biophysics, 3, 155-162.
|
|
[30]
|
Chang, C.C. and Lin, C.J. (2001) LIBSVM: A Library for Support Vector Machines. Software. http://www.Csie.ntu.edu.tw/cjlin/libsvm
|
|
[31]
|
Shen, H.B. and Chou, K.C. (2006) Ensemble Classifier for Protein Fold Pattern Recognition. Bioinformatics, 22, 17171722.
|