关于共一零分支图的支配集的一个注记
A Note on Domination Sets of Single ZeroComponent Graphs
DOI: 10.12677/PM.2026.161009, PDF,    国家自然科学基金支持
作者: 姚芳滢, 徐浩轩:江西理工大学理学院,江西 赣州
关键词: 共一零分支图向量空间支配集Single Zero Component Graphs Vector Spaces Domination Sets
摘要: 设n ≥ 2,而Fn为有限域F 上的n 维向量空间. Ou的文章引入了Fn的共一零分支图Γ(Fn) 的概念. 当n = 3, 4 时,Ou的文章还刻画了Γ(Fn) 的最小支配集. 当n = 5 时,本文将对Γ(Fn) 的最小支配集给出完全刻画.
Abstract: Let n ≥ 2, and Fn be the n-dimensional vector space over a finite field F. In Ou's article, the authors introduced the single zero component graph Γ(Fn) of Fn, and described the minimum dominating sets of Γ(Fn) when n = 3,4. In this paper, we will give a complete characterization of the minimum dominating sets of Γ(Fn) when n = 5.
文章引用:姚芳滢, 徐浩轩. 关于共一零分支图的支配集的一个注记[J]. 理论数学, 2026, 16(1): 66-75. https://doi.org/10.12677/PM.2026.161009

参考文献

[1] Das, A. (2016) Subspace Inclusion Graph of a Vector Space. Communications in Algebra, 44, 4724-4731. [Google Scholar] [CrossRef
[2] Das, A. (2017) On Subspace Inclusion Graph of a Vector Space. Linear and Multilinear Algebra, 66, 554-564. [Google Scholar] [CrossRef
[3] Ma, X. and Wang, D. (2017) Independence Number of Subspace Inclusion Graph and Subspace Sum Graph of a Vector Space. Linear and Multilinear Algebra, 66, 2430-2437. [Google Scholar] [CrossRef
[4] Wong, D., Wang, X. and Xia, C. (2018) On Two Conjectures on the Subspace Inclusion 6 Graph of a Vector Space. Journal of Algebra and Its Applications, 17, Article 1850189. [Google Scholar] [CrossRef
[5] Wang, X. and Wong, D. (2018) Automorphism Group of the Subspace Inclusion Graph of a Vector Space. Bulletin of the Malaysian Mathematical Sciences Society, 42, 2213-2224. [Google Scholar] [CrossRef
[6] Tian, F., Wong, D. and Sun, D. (2020) Automorphisms of the Subspace Sum Graph on a Vector Space. Ars Combinatoria, 152, 247-256.
[7] Das, A. (2016) Nonzero Component Graph of a Finite Dimensional Vector Space. Communi- cations in Algebra, 44, 3918-3926. [Google Scholar] [CrossRef
[8] Das, A. (2016) Non-Zero Component Union Graph of a Finite-Dimensional Vector Space. Lin- ear and Multilinear Algebra, 65, 1276-1287. [Google Scholar] [CrossRef
[9] Ou, S., Fan, Y. and Li, Q. (2021) Automorphism Group and Other Properties of Zero Com- ponent Graph over a Vector Space. Journal of Mathematics, 2021, Article 5595620. [Google Scholar] [CrossRef
[10] Ou, S., Chen, S., Yao, F. and Zhang, S. (2025) Domination Sets and Automorphism Group of a Graph Associated to a Finite Vector Space. Asian-European Journal of Mathematics, 18, Article 2550015. [Google Scholar] [CrossRef