学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 16 No. 1 (January 2026)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
关于共一零分支图的支配集的一个注记
A Note on Domination Sets of Single ZeroComponent Graphs
DOI:
10.12677/PM.2026.161009
,
PDF
,
,
,
被引量
国家自然科学基金支持
作者:
姚芳滢
,
徐浩轩
:江西理工大学理学院,江西 赣州
关键词:
共一零分支图
;
向量空间
;
支配集
;
Single Zero Component Graphs
;
Vector Spaces
;
Domination Sets
摘要:
设n ≥ 2,而F
n
为有限域F 上的n 维向量空间. Ou的文章引入了F
n
的共一零分支图Γ(F
n
) 的概念. 当n = 3, 4 时,Ou的文章还刻画了Γ(F
n
) 的最小支配集. 当n = 5 时,本文将对Γ(F
n
) 的最小支配集给出完全刻画.
Abstract:
Let n ≥ 2, and F
n
be the n-dimensional vector space over a finite field F. In Ou's article, the authors introduced the single zero component graph Γ(F
n
) of F
n
, and described the minimum dominating sets of Γ(F
n
) when n = 3,4. In this paper, we will give a complete characterization of the minimum dominating sets of Γ(F
n
) when n = 5.
文章引用:
姚芳滢, 徐浩轩. 关于共一零分支图的支配集的一个注记[J]. 理论数学, 2026, 16(1): 66-75.
https://doi.org/10.12677/PM.2026.161009
参考文献
[1]
Das, A. (2016) Subspace Inclusion Graph of a Vector Space. Communications in Algebra, 44, 4724-4731. [
Google Scholar
] [
CrossRef
]
[2]
Das, A. (2017) On Subspace Inclusion Graph of a Vector Space. Linear and Multilinear Algebra, 66, 554-564. [
Google Scholar
] [
CrossRef
]
[3]
Ma, X. and Wang, D. (2017) Independence Number of Subspace Inclusion Graph and Subspace Sum Graph of a Vector Space. Linear and Multilinear Algebra, 66, 2430-2437. [
Google Scholar
] [
CrossRef
]
[4]
Wong, D., Wang, X. and Xia, C. (2018) On Two Conjectures on the Subspace Inclusion 6 Graph of a Vector Space. Journal of Algebra and Its Applications, 17, Article 1850189. [
Google Scholar
] [
CrossRef
]
[5]
Wang, X. and Wong, D. (2018) Automorphism Group of the Subspace Inclusion Graph of a Vector Space. Bulletin of the Malaysian Mathematical Sciences Society, 42, 2213-2224. [
Google Scholar
] [
CrossRef
]
[6]
Tian, F., Wong, D. and Sun, D. (2020) Automorphisms of the Subspace Sum Graph on a Vector Space. Ars Combinatoria, 152, 247-256.
[7]
Das, A. (2016) Nonzero Component Graph of a Finite Dimensional Vector Space. Communi- cations in Algebra, 44, 3918-3926. [
Google Scholar
] [
CrossRef
]
[8]
Das, A. (2016) Non-Zero Component Union Graph of a Finite-Dimensional Vector Space. Lin- ear and Multilinear Algebra, 65, 1276-1287. [
Google Scholar
] [
CrossRef
]
[9]
Ou, S., Fan, Y. and Li, Q. (2021) Automorphism Group and Other Properties of Zero Com- ponent Graph over a Vector Space. Journal of Mathematics, 2021, Article 5595620. [
Google Scholar
] [
CrossRef
]
[10]
Ou, S., Chen, S., Yao, F. and Zhang, S. (2025) Domination Sets and Automorphism Group of a Graph Associated to a Finite Vector Space. Asian-European Journal of Mathematics, 18, Article 2550015. [
Google Scholar
] [
CrossRef
]
投稿
为你推荐
友情链接
科研出版社
开放图书馆