肿瘤与衰老互作的基础研究进展与临床启示
Basic Research Advances and Clinical Implications of Tumor-Aging Interactions
DOI: 10.12677/WJCR.2026.161005, PDF, HTML, XML,    科研立项经费支持
作者: 王羽馨*:重庆理工大学药学与生物工程学院,重庆;龙海霞, 黄佳妮#:陆军军医大学第二附属医院肿瘤研究所,重庆
关键词: 肿瘤–衰老轴细胞衰老衰老相关分泌表型免疫衰老Tumor-Aging Axis Cellular Senescence Senescence-Associated Secretory Phenotype (SASP) Immunosenescence
摘要: 恶性肿瘤是本世纪最严重威胁人类生命与健康的重大疾病之一,深入探究其发生与发展机制具有重要的科学意义和临床价值。机体衰老不仅是肿瘤发生发展的重要诱因,同时肿瘤的发展又会反过来加剧机体衰老,二者共同构成了双向恶性循环的肿瘤–衰老轴。一方面,衰老引发的基因组不稳定的增加、衰老相关分泌表型分子(SASP)的释放、机体免疫功能的衰退和肠道菌群的失衡等因素,均可促进肿瘤的发生发展;另一方面,肿瘤的演进及治疗过程会进一步诱导炎症因子和细胞外囊泡的释放,驱动慢性炎症反应,从而加速机体的衰老。在本综述中,我们将系统梳理肿瘤–衰老轴的核心内涵,总结衰老在肿瘤发生发展中的关键作用机制,阐述肿瘤及其治疗如何加速机体衰老进程,并进一步探讨靶向肿瘤–衰老轴干预策略及其潜在前景与挑战。
Abstract: Malignant tumors represent one of the most critical threats to human life and health in this century. A deeper understanding of the mechanisms underlying their initiation and progression is of great scientific and clinical importance. Organismal aging is not only a major predisposing factor for tumor development but is also exacerbated by tumor progression, together forming a bidirectional vicious cycle referred to as the tumor-aging axis. On one hand, aging-related factors, including increased genomic instability, the release of senescence-associated secretory phenotype (SASP) molecules, declining immune function, and gut microbiota dysbiosis, collectively promote tumor initiation and progression. On the other hand, tumor evolution and anticancer treatments further induce the release of inflammatory cytokines and extracellular vesicles, fueling chronic inflammatory responses that accelerate systemic aging. In this review, we systematically outline the core concepts of the tumor-aging axis, summarize key mechanisms by which aging influences tumor development, elucidate how tumors and their treatments drive aging, and discuss potential intervention strategies targeting this axis, along with their prospects and challenges.
文章引用:王羽馨, 龙海霞, 黄佳妮. 肿瘤与衰老互作的基础研究进展与临床启示[J]. 世界肿瘤研究, 2026, 16(1): 32-40. https://doi.org/10.12677/WJCR.2026.161005

1. 引言

恶性肿瘤作为严重威胁人类生命健康的重大疾病,已被公认为全球主要致死原因之一[1]。流行病学数据显示,全球人口老龄化趋势加剧,65岁以上高龄人口规模持续扩大。目前约60%的癌症新发病例集中于65岁以上人群[2]。肿瘤发病率与年龄的相关性在包括乳腺癌[3]、结直肠癌[4]、前列腺癌[5]及多发性骨髓瘤[6]等多种恶性肿瘤中均得到证实。此外,大量临床证据表明,衰老不仅是恶性肿瘤发生的重要危险因素,还与恶性肿瘤的不良预后密切相关[7] [8]。

在分子与细胞层面,肿瘤发生与机体衰老存在一系列共同的生物学特征,包括基因组不稳定、表观遗传改变、慢性炎症、干细胞衰竭、微生物组失调等[9] [10]。这些特征相互关联并形成正向反馈:衰老可促进肿瘤的发生与发展;反之,肿瘤及其治疗也可加剧全身性衰老。这种双向促进作用构成了肿瘤–衰老轴的理论基础,深入了解肿瘤–衰老轴的调控规律对恶性肿瘤的防治,尤其是老年肿瘤的管理,具有重要意义。本综述聚焦肿瘤与衰老的双向互作关系及其临床价值,系统总结衰老促进肿瘤发生发展的核心机制、肿瘤进展及其治疗过程加速机体衰老的关键路径,并探讨靶向肿瘤–衰老轴干预策略的转化应用前景。

2. 衰老促进肿瘤发生发展的机制

2.1. 基因组不稳定诱导肿瘤发生

基因组不稳定是肿瘤发生的重要驱动力。随着机体衰老,端粒逐渐缩短,可触发DNA损伤反应(DNA Damage Response, DDR)并激活p53信号通路,通常诱导细胞衰老以清除潜在癌变细胞[11] [12]。然而,在肿瘤演进过程中,细胞能够逃避这一抑癌机制,并利用端粒缩短所导致的基因组不稳定性获得增殖优势。在腺瘤性息肉病大肠病突变小鼠模型中,端粒功能障碍显著加速肠道腺瘤的发生[13];而在人类肝癌中,肿瘤细胞通过端粒酶再激活等方式将端粒维持于亚稳态长度(5.2 ± 0.2 kb,正常7.8 ± 0.2 kb),虽不足以诱发衰老,却足以引起持续的基因组不稳定,最终推动恶性转化[14]。人群研究进一步证实[15] [16],端粒长度缩短与肺癌、膀胱癌、胃肠道癌等多种癌症的发病风险显著相关。

除了端粒依赖性机制外,衰老还可通过削弱DNA修复系统进一步加剧基因组不稳定性。衰老细胞常伴随同源重组修复缺陷(Homologous Recombination Deficiency, HRD),其表现为表观遗传异常及修复蛋白功能丧失,为肿瘤发生提供遗传学基础[17] [18]。泛癌种分析证实,老年肿瘤患者的HRD评分普遍高于年轻患者,表明年龄是HRD的一个关键风险因素[19]。在胃癌中,老年患者的HRD还与肿瘤突变负荷(Tumor Mutational Burden, TMB)和微卫星不稳定性(Microsatellite Instability-High, MSI-H)显著相关[20]。另一方面,HRD相关肿瘤(如BRCA1突变型)易形成免疫抑制微环境,导致对免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)耐药[21]。为了克服这一耐药机制,PARP抑制剂联合ICIs成为一种新策略。在2期TOPACIO试验(NCT02657889)中,PARP抑制剂联合ICIs在BRCA突变患者中取得了显著优于对照组的疗效[22],证实了靶向HRD以增敏免疫治疗的策略价值。

2.2. 衰老细胞分泌SASP加速肿瘤进展

衰老相关分泌表型(SASP)是由衰老细胞分泌的一组复杂因子,包括细胞因子、趋化因子、生长因子和蛋白酶等,在肿瘤微环境的建立与维持中发挥关键作用。SASP通过多种机制促进肿瘤进展,包括增强增殖、侵袭、转移和治疗耐药性[23]。SASP介导的免疫抑制是其促癌的核心机制之一。在胰腺导管腺癌中,具有SASP特征的癌症相关成纤维细胞(Cancer-Associated Fibroblasts, CAF)可显著抑制CD8+ T细胞功能,从而削弱免疫治疗效果[24]。在黑色素瘤模型中,衰老成纤维细胞通过分泌IL-6、MMP3及CCL家族趋化因子等激活NF-κB通路,促进免疫逃逸与肿瘤增殖[25]。

SASP因子也可直接驱动肿瘤的恶性进展。IL-6通过激活JAK/STAT3信号通路上调Bcl-2/Bcl-xL并诱导上皮–间质转化(Epithelial-Mesenchymal Transition, EMT),从而增强肿瘤增殖、迁移与侵袭能力[26];在神经胶质瘤模型中,靶向抑制该通路可显著抑制肿瘤增殖并诱导细胞凋亡[27]。除IL-6外,其他SASP组分如生长分化因子15 (Growth Differentiation Factor 15, GDF15)和细胞周期蛋白B2 (Cyclin B2, CCNB2)也分别被报道在结肠癌和神经胶质瘤中介导肿瘤发生、迁移及SASP的自我放大[28] [29]。

更为关键的是,SASP也是治疗耐药的重要媒介。衰老细胞(如治疗诱导衰老的肿瘤细胞或衰老CAFs)在应激下维持活跃代谢并持续分泌SASP因子,直接增强肿瘤细胞的侵袭与转移能力,导致治疗失败[30]。近期研究发现,SPAN8+肌成纤维细胞样CAFs (myCAFs)通过分泌IL-6、IL-8等关键SASP因子,一方面增强乳腺癌细胞干性以获得耐药能力,使其获得内在耐药能力;另一方面直接中和化疗药物的细胞毒性作用,最终导致临床化疗失败[31]。这为靶向SASP以逆转耐药提供了重要依据。

2.3. 免疫衰老介导的肿瘤免疫监视功能衰竭

免疫衰老(Immunosenescence)是连接机体衰老与肿瘤发生的重要桥梁。其特征表现为适应性免疫功能下降与慢性低度炎症(炎症衰老)并存,共同塑造利于肿瘤免疫逃逸的微环境[32]。其中,CD8+ T细胞的功能衰退是导致抗肿瘤免疫监视失败的核心环节。胸腺退化导致初始T细胞输出减少,削弱了针对肿瘤新抗原的T细胞库多样性[33]。衰老通过IL-6/STAT3等通路上调PD-1、Tim-3等耗竭标志物,加剧CD8+ T细胞功能失调[34]。临床研究发现,老年结直肠癌患者外周血中衰老表型(CD28CD57+)的CD8+ T细胞比例显著升高,与不良预后正相关[35]。

除了T细胞固有缺陷外,衰老通过改变髓系细胞的功能状态,间接削弱机体的抗肿瘤免疫监视能力。在老年个体中,IL-1α的持续信号驱动产生大量的髓系祖细胞样细胞(Myeloid Progenitor-Like Cells, MPLCs)生成并募集至肿瘤局部[36]。在肿瘤微环境中,IL-1α进一步促使这些MPLCs向M2型肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAMs)分化[37],后者通过分泌IL-10和TGF-β等因子直接抑制CD8+ T细胞功能。该机制在老年肺癌模型中得到验证,IL-1受体拮抗剂干预可逆转免疫抑制并延缓肿瘤进展[36]。此外,衰老亦促使髓源性抑制细胞(Myeloid-Derived Suppressor Cells, MDSCs)显著扩增。MDSCs通过表面PD-L1与CD8+ T细胞PD-1结合,此外还分泌精氨酸酶-1 (Arginase-1, Arg-1)以消耗T细胞必需营养,从而多维度抑制CD8+ T细胞功能[38]。

值得注意的是,这种衰老相关的免疫抑制具有可逆性。一项针对头颈鳞癌的I期临床试验(COIS-01)证明,联合使用抗衰老药物(senolytics)与抗PD-1疗法可有效清除衰老免疫细胞,增加肿瘤内T细胞浸润,并将病理缓解率提升至33.3% [39]。为通过靶向免疫衰老恢复抗肿瘤功能提供了临床依据。

2.4. 肠道菌群失调加速肿瘤进展

肠道菌群失调是衰老促进肿瘤进展的重要机制。伴随衰老进程,肠道中有益菌减少(如Bifidobacterium)而条件致病菌增多(如Enterobacteriaceae) [40],此类生态失衡可通过多种途径加速肿瘤发生与转移。具体而言,衰老相关菌群紊乱导致脱氧胆酸等致癌代谢物累积,直接刺激肿瘤增殖并抑制凋亡[41],老年来源菌群移植可以促进小鼠结肠肿瘤发生[42]。其次,大肠杆菌C17等病原菌通过破坏肠道上皮紧密连接蛋白,削弱屏障完整性,促进细菌及肿瘤细胞向肝脏迁移,这为老年结直肠癌肝转移率高提供了潜在解释[43]。此外,菌群代谢物可诱导Th17细胞分化及IL-17分泌,维持慢性炎症状态,进而重塑肿瘤微环境[44]。综上,衰老背景下的菌群失调通过代谢紊乱、屏障破坏和炎症激活三方面协同促进肿瘤进展的机制,也为开发针对菌群的干预策略提供了理论依据。

3. 肿瘤加速衰老的机制

3.1. 肿瘤加速远端器官衰老

肿瘤可通过分泌细胞因子及释放肿瘤源性细胞外囊泡(Tumor-derived Extracellular Vesicles, tEVs)等途径,系统性加速远端器官衰老,形成肿瘤–衰老双向恶性循环[45]。在免疫系统方面,tEVs携带的PD-L1可诱导T细胞DNA损伤及脂质代谢紊乱,导致T细胞衰老[46]。在实质器官方面,肿瘤分泌的细胞外囊泡和颗粒(Extracellular Vesicles and Particles, EVPs)能够诱导TNF-α介导的慢性炎症,直接引发肝脏代谢紊乱等衰老表型[47]。

除了上述通过tEVs对免疫系统和肝脏等实质器官的影响外,肿瘤对造血系统的衰老调控也尤为重要。肿瘤来源的IL-1β驱动骨髓LepR+间充质基质细胞(LepR+ Mesenchymal Stromal Cells, MSC-L)向炎症性表型(inflammatory LepR+ Mesenchymal Stromal Cells, iMSC-L)转化,并激活老年造血干细胞(Hematopoietic Stem Cells, HSCs)及多能祖细胞(Multipotent Progenitor, MPPs)的应急髓系生成通路,最终导致造血谱系偏移及再生功能受损[48] [49]。同时,肿瘤细胞通过竞争性消耗干细胞因子(Stem Cell Factor, SCF)等关键营养因子,使HSCs长期过度激活,加剧其功能耗竭[50]。

肿瘤加速全身性衰老的最极端表现形式是恶病质,其特征为骨骼肌持续减少,且营养支持无法完全逆转,最终导致进行性功能丧失[51]。该过程不仅涉及肿瘤直接分泌TNF-α等促炎因子经NF-κB通路诱导MuRF1/atrogin-1表达,促进蛋白质降解与肌萎缩[52]。更关键的是,肝脏REV-ERBα失调介导的肝细胞因子分泌,远程驱动心、肌、脂肪等多器官分解代谢紊乱及功能衰竭;干预研究证实,靶向此通路可逆转该过程[53]。

3.2. 癌症治疗诱导的衰老

癌症治疗在有效控制肿瘤的同时,也可通过诱导正常组织细胞衰老引发长期副作用。常规抗肿瘤治疗(如化疗、放疗)可通过DNA损伤、端粒耗竭等分子机制加速生物体衰老[54]。化疗药物阿霉素通过抑制拓扑异构酶II活性,诱导DNA双链断裂并激活p53/p21信号通路,导致正常组织细胞周期阻滞,进而引发细胞衰老及相关组织功能障碍[55]。在动物模型中,阿霉素治疗可导致卵巢组织中衰老细胞显著积累,并造成不可逆的生育能力损伤[56]。放射治疗则通过电离辐射直接损伤DNA分子,其中端粒结构的破坏尤为关键[57]。研究表明,γ射线照射可在5天内显著缩短端粒长度,迅速诱导细胞衰老表型[58]。此外,新兴的靶向治疗(如PARP抑制剂)和免疫治疗虽能精准杀伤肿瘤细胞,但也可能通过DNA修复抑制或慢性炎症反应,分别导致造血干细胞衰老或血管功能衰退[59] [60]。

这些发现表明,现有抗肿瘤治疗在发挥疗效的同时,往往通过多种分子途径加速正常组织衰老。这一认识不仅为理解治疗相关毒副作用提供了新视角,更强调了开发同步干预衰老的联合策略的临床价值。

4. 靶向肿瘤–衰老轴的临床转化价值

靶向肿瘤–衰老轴的核心在于精准清除衰老细胞(Senotherapy)并动态监测衰老状态,以打破肿瘤–衰老恶性循环。在清除策略方面,达沙替尼 + 槲皮素(D + Q)联合方案已在临床试验(NCT02874989)中证实可有效降低衰老细胞负荷[61],但其选择性不足和脱靶效应限制了临床应用[62]。新一代递送系统如脂褐素靶向的mGL392和干细胞来源外泌体hESC-Exos展现出更好的特异性[63] [64]。除了直接清除衰老细胞,senomorphics通过抑制mTOR、NF-κB或JAK/STAT等关键信号通路,强力下调SASP因子的产生和分泌[65]。Oridonin通过抑制NF-κB和p38通路,在不影响p21等衰老标志物的同时,将关键SASP因子(IL-6/IL-8)水平降低55%以上[66]。此外,代谢重编程与表观遗传调控也展现出潜在价值。肿瘤中精氨酸琥珀酸合成酶(Argininosuccinate Synthase 1, ASS1)的下调导致精氨酸营养缺陷,成为代谢干预的潜在策略[67];HDAC抑制剂(如Romidepsin、Panobinostat)通过增强组蛋白乙酰化,诱导肿瘤细胞衰老并调控SASP,从而重塑免疫微环境[68] [69]。然而,该领域仍面临关键挑战:首先是药物靶向性不足,第一代senolytics可能损伤正常细胞;其次是体内递送效率低,难以在肿瘤微环境中实现有效富集;最重要的是长期安全性尚未明确,特别是与放化疗联用时的风险。未来需要开发更精准的递送系统,并建立基于生物标志物的个体化治疗策略,将衰老干预与常规治疗有机结合。

在衰老动态监测方面,基于血液p21/p16蛋白联合SASP因子分析可作为衰老状态的评估指标[70]。近年来,新兴技术如空间组学、个性化生理年龄预测模型和深度学习衰老评分系统(Deep-SeSMo)正推动监测体系向精准化发展[71] [72],值得注意的是,协同干预策略已显示出潜力,曲美替尼与雷帕霉素的联合使用在动物模型中能增强抗肿瘤效果并延长寿命[73]。

从克隆演化视角干预HSCs衰老,是重建造血功能的新兴方向。肿瘤及其治疗过程所产生的选择性压力可驱动HSC克隆结构发生异常演变,导致克隆多样性下降与功能缺陷型克隆扩增。传统技术难以动态解析这一过程[74]。最新的EPI-Clone等表观遗传追踪技术,为研究HSC克隆架构演变提供了有力的工具[75]。未来研究可着眼于探索如何在恢复HSC功能的同时重塑其克隆多样性,为造血系统重建提供新路径。

这些进展凸显了双靶向策略的临床价值:一方面通过早期干预衰老预防肿瘤发生;另一方面在抗肿瘤治疗中同步调控衰老,从而改善患者生存质量并推动健康老龄化实现。

5. 结论

衰老与肿瘤通过肿瘤–衰老轴形成双向恶性循环:一方面,衰老通过诱发基因组不稳定、创造SASP炎症微环境、导致免疫衰退及菌群失调等多重机制,为肿瘤发生发展提供了沃土;另一方面,肿瘤及其治疗手段又通过分泌因子、释放细胞外囊泡、诱发慢性炎症等途径,反噬性地加速全身性衰老进程。针对这一机制,靶向衰老细胞和调控SASP可预防肿瘤,而联合抗肿瘤与抗衰老策略有望改善患者预后。未来需继续探索跨组织调控机制、开发精准监测标志物并优化协同治疗策略。

致谢

感谢为本文提出修改意见的所有老师。

基金项目

重庆市杰出青年基金(CSTB2022NSCQ-JQX0005);重庆理工大学研究生创新项目(gzlcx20252048)。

参考文献

[1] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. [Google Scholar] [CrossRef
[2] Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45. [Google Scholar] [CrossRef
[3] Giaquinto, A.N., Sung, H., Newman, L.A., Freedman, R.A., Smith, R.A., Star, J., et al. (2024) Breast Cancer Statistics 2024. CA: A Cancer Journal for Clinicians, 74, 477-495. [Google Scholar] [CrossRef
[4] Siegel, R.L., Wagle, N.S., Cercek, A., Smith, R.A. and Jemal, A. (2023) Colorectal Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 233-254. [Google Scholar] [CrossRef
[5] Cui, H., Zhang, W., Zhang, L., Qu, Y., Xu, Z., Tan, Z., et al. (2024) Risk Factors for Prostate Cancer: An Umbrella Review of Prospective Observational Studies and Mendelian Randomization Analyses. PLOS Medicine, 21, e1004362. [Google Scholar] [CrossRef
[6] Eisfeld, C., Kajüter, H., Möller, L., Wellmann, I., Shumilov, E. and Stang, A. (2023) Time Trends in Survival and Causes of Death in Multiple Myeloma: A Population-Based Study from Germany. BMC Cancer, 23, Article No. 317. [Google Scholar] [CrossRef
[7] Wang, W., Kang, L., Zhang, J., Li, H., Cao, T. and He, S. (2023) Age and Treatment Disparities in Survival of Primary Malignant Cardiac Tumors: An Analysis of over 40 Years and 500 Patients. Journal of Thoracic Disease, 15, 4434-4444. [Google Scholar] [CrossRef
[8] Krigers, A., Demetz, M., Thomé, C. and Freyschlag, C.F. (2021) Age Is Associated with Unfavorable Neuropathological and Radiological Features and Poor Outcome in Patients with WHO Grade 2 and 3 Gliomas. Scientific Reports, 11, Article No. 17380. [Google Scholar] [CrossRef
[9] López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. and Kroemer, G. (2023) Meta-Hallmarks of Aging and Cancer. Cell Metabolism, 35, 12-35. [Google Scholar] [CrossRef
[10] Kroemer, G., Maier, A.B., Cuervo, A.M., Gladyshev, V.N., Ferrucci, L., Gorbunova, V., et al. (2025) From Geroscience to Precision Geromedicine: Understanding and Managing Aging. Cell, 188, 2043-2062. [Google Scholar] [CrossRef
[11] Liu, Y., Su, Z., Tavana, O. and Gu, W. (2024) Understanding the Complexity of P53 in a New Era of Tumor Suppression. Cancer Cell, 42, 946-967. [Google Scholar] [CrossRef
[12] Lanna, A. (2025) Unexpected Links between Cancer and Telomere State. Seminars in Cancer Biology, 110, 46-55. [Google Scholar] [CrossRef
[13] LaBella, K.A., Hsu, W., Li, J., Qi, Y., Liu, Y., Liu, J., et al. (2024) Telomere Dysfunction Alters Intestinal Stem Cell Dynamics to Promote Cancer. Developmental Cell, 59, 1475-1486.e5. [Google Scholar] [CrossRef
[14] Nault, J.C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., et al. (2013) High Frequency of Telomerase Reverse-Transcriptase Promoter Somatic Mutations in Hepatocellular Carcinoma and Preneoplastic Lesions. Nature Communications, 4, Article No. 2218. [Google Scholar] [CrossRef
[15] Wu, X., Amos, C.I., Zhu, Y., Zhao, H., Grossman, B.H., Shay, J.W., et al. (2003) Telomere Dysfunction: A Potential Cancer Predisposition Factor. JNCI Journal of the National Cancer Institute, 95, 1211-1218. [Google Scholar] [CrossRef
[16] McGrath, M., Wong, J.Y.Y., Michaud, D., Hunter, D.J. and De Vivo, I. (2007) Telomere Length, Cigarette Smoking, and Bladder Cancer Risk in Men and Women. Cancer Epidemiology, Biomarkers & Prevention, 16, 815-819. [Google Scholar] [CrossRef
[17] Chen, C., Feng, W., Lim, P.X., Kass, E.M. and Jasin, M. (2018) Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annual Review of Cancer Biology, 2, 313-336. [Google Scholar] [CrossRef
[18] Yoshida, K. and Miki, Y. (2004) Role of BRCA1 and BRCA2 as Regulators of DNA Repair, Transcription, and Cell Cycle in Response to DNA Damage. Cancer Science, 95, 866-871. [Google Scholar] [CrossRef
[19] Ren, L., Yao, R., Hou, T., Liu, C., Zhao, F., Chen, X., et al. (2025) Pan-Cancer Analysis of Homologous Recombination Deficiency and Homologous Recombination Repair-associated Gene Alterations in Solid Tumors from a Large Asian Cohort. BMC Cancer, 25, Article No. 946. [Google Scholar] [CrossRef
[20] Maki, Y., Kono, Y., Ozato, T., Yamamoto, H., Hirasawa, A., Ennishi, D., et al. (2025) Distinct Age-Related Effects of Homologous Recombination Deficiency on Genomic Profiling and Treatment Efficacy in Gastric Cancer. Journal of Gastroenterology, 60, 1232-1241. [Google Scholar] [CrossRef
[21] Xu, Q., Wen, Y., Huang, T., Li, H., Liu, X., Shi, S., et al. (2025) The Distinct Landscape of Tumor Immune Microenvironment in Homologous Recombination Deficient Cancers. Biomarker Research, 13, Article No. 108. [Google Scholar] [CrossRef
[22] Vinayak, S., Tolaney, S.M., Schwartzberg, L., Mita, M., McCann, G., Tan, A.R., et al. (2019) Open-Label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncology, 5, 1132-1140. [Google Scholar] [CrossRef
[23] Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978. [Google Scholar] [CrossRef
[24] Krishnamurty, A.T., Shyer, J.A., Thai, M., Gandham, V., Buechler, M.B., Yang, Y.A., et al. (2022) LRRC15+ Myofibroblasts Dictate the Stromal Setpoint to Suppress Tumour Immunity. Nature, 611, 148-154. [Google Scholar] [CrossRef
[25] Guan, X., LaPak, K.M., Hennessey, R.C., Yu, C.Y., Shakya, R., Zhang, J., et al. (2017) Stromal Senescence by Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Molecular Cancer Research, 15, 237-249. [Google Scholar] [CrossRef
[26] Zhang, C., Xu, G., Jia, W., Li, J., Ma, J., Ren, W., et al. (2012) Activation of STAT3 Signal Pathway Correlates with Twist and E-Cadherin Expression in Hepatocellular Carcinoma and Their Clinical Significance. Journal of Surgical Research, 174, 120-129. [Google Scholar] [CrossRef
[27] Dai, X.L., et al. (2024) The Marine Natural Product Trichobotrysin B Inhibits Proliferation and Promotes Apoptosis of Human Glioma Cells via the IL-6-Mediated STAT3/JAK Signaling Pathway. Smart Materials in Medicine, 5, 66-74.
[28] Guo, Y., Ayers, J.L., Carter, K.T., Wang, T., Maden, S.K., Edmond, D., et al. (2019) Senescence-Associated Tissue Microenvironment Promotes Colon Cancer Formation through the Secretory Factor GDF15. Aging Cell, 18, e13013. [Google Scholar] [CrossRef
[29] Wang, Y., Zhang, H., Wang, M., He, J., Guo, H., Li, L., et al. (2021) CCNB2/SASP/Cathepsin B & PGE2 Axis Induce Cell Senescence Mediated Malignant Transformation. International Journal of Biological Sciences, 17, 3538-3553. [Google Scholar] [CrossRef
[30] Luo, J., Sun, T., Liu, Z., Liu, Y., Liu, J., Wang, S., et al. (2025) Persistent Accumulation of Therapy-Induced Senescent Cells: An Obstacle to Long-Term Cancer Treatment Efficacy. International Journal of Oral Science, 17, Article No. 59. [Google Scholar] [CrossRef
[31] Fan, G., Yu, B., Tang, L., Zhu, R., Chen, J., Zhu, Y., et al. (2024) TSPAN8+ Myofibroblastic Cancer-Associated Fibroblasts Promote Chemoresistance in Patients with Breast Cancer. Science Translational Medicine, 16, eadj5705. [Google Scholar] [CrossRef
[32] Fu, Y., Wang, B., Alu, A., Hong, W., Lei, H., He, X., et al. (2025) Immunosenescence: Signaling Pathways, Diseases and Therapeutic Targets. Signal Transduction and Targeted Therapy, 10, Article No. 250. [Google Scholar] [CrossRef
[33] Goyani, P., Christodoulou, R. and Vassiliou, E. (2024) Immunosenescence: Aging and Immune System Decline. Vaccines, 12, Article No. 1314. [Google Scholar] [CrossRef
[34] Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K. and Anderson, A.C. (2010) Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. Journal of Experimental Medicine, 207, 2187-2194. [Google Scholar] [CrossRef
[35] Giunco, S., Petrara, M.R., Bergamo, F., Del Bianco, P., Zanchetta, M., Carmona, F., et al. (2019) Immune Senescence and Immune Activation in Elderly Colorectal Cancer Patients. Aging, 11, 3864-3875. [Google Scholar] [CrossRef
[36] Park, M.D., Le Berichel, J., Hamon, P., Wilk, C.M., Belabed, M., Yatim, N., et al. (2024) Hematopoietic Aging Promotes Cancer by Fueling Il-1⍺-Driven Emergency Myelopoiesis. Science, 386, eadn0327. [Google Scholar] [CrossRef
[37] Hänggi, K., Li, J., Gangadharan, A., Liu, X., Celias, D.P., Osunmakinde, O., et al. (2024) Interleukin-1α Release during Necrotic-Like Cell Death Generates Myeloid-Driven Immunosuppression That Restricts Anti-Tumor Immunity. Cancer Cell, 42, 2015-2031.e11. [Google Scholar] [CrossRef
[38] Rodríguez, P.C. and Ochoa, A.C. (2008) Arginine Regulation by Myeloid Derived Suppressor Cells and Tolerance in Cancer: Mechanisms and Therapeutic Perspectives. Immunological Reviews, 222, 180-191. [Google Scholar] [CrossRef
[39] Liu, N., Wu, J., Deng, E., Zhong, J., Wei, B., Cai, T., et al. (2025) Immunotherapy and Senolytics in Head and Neck Squamous Cell Carcinoma: Phase 2 Trial Results. Nature Medicine, 31, 3047-3061. [Google Scholar] [CrossRef
[40] Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J., Lapidus, J., et al. (2021) Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nature Metabolism, 3, 274-286. [Google Scholar] [CrossRef
[41] Jin, L., Shi, L. and Huang, W. (2024) The Role of Bile Acids in Human Aging. Medical Review, 4, 154-157. [Google Scholar] [CrossRef
[42] Crossland, N.A., Beck, S., Tan, W.Y., Lo, M., Mason, J.B., Zhang, C., et al. (2023) Fecal Microbiota Transplanted from Old Mice Promotes More Colonic Inflammation, Proliferation, and Tumor Formation in Azoxymethane-Treated A/J Mice than Microbiota Originating from Young Mice. Gut Microbes, 15, Article ID: 2288187. [Google Scholar] [CrossRef
[43] Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021) Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39, 708-724.e11. [Google Scholar] [CrossRef
[44] Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V.K. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517. [Google Scholar] [CrossRef
[45] Ye, Z., Chen, W., Li, G., Huang, J. and Lei, J. (2023) Tissue-Derived Extracellular Vesicles in Cancer Progression: Mechanisms, Roles, and Potential Applications. Cancer and Metastasis Reviews, 43, 575-595. [Google Scholar] [CrossRef
[46] Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalamah, H., et al. (2025) Tumor Extracellular Vesicle-Derived PD-L1 Promotes T Cell Senescence through Lipid Metabolism Reprogramming. Science Translational Medicine, 17, eadm7269. [Google Scholar] [CrossRef
[47] Wang, G., Li, J., Bojmar, L., Chen, H., Li, Z., Tobias, G.C., et al. (2023) Tumour Extracellular Vesicles and Particles Induce Liver Metabolic Dysfunction. Nature, 618, 374-382. [Google Scholar] [CrossRef
[48] Pietras, E.M., Mirantes-Barbeito, C., Fong, S., Loeffler, D., Kovtonyuk, L.V., Zhang, S., et al. (2016) Chronic Interleukin-1 Exposure Drives Haematopoietic Stem Cells Towards Precocious Myeloid Differentiation at the Expense of Self-Renewal. Nature Cell Biology, 18, 607-618. [Google Scholar] [CrossRef
[49] Mitchell, C.A., Verovskaya, E.V., Calero-Nieto, F.J., Olson, O.C., Swann, J.W., Wang, X., et al. (2023) Stromal Niche Inflammation Mediated by IL-1 Signalling Is a Targetable Driver of Haematopoietic Ageing. Nature Cell Biology, 25, 30-41. [Google Scholar] [CrossRef
[50] Colmone, A., Amorim, M., Pontier, A.L., Wang, S., Jablonski, E. and Sipkins, D.A. (2008) Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells. Science, 322, 1861-1865. [Google Scholar] [CrossRef
[51] Berriel Diaz, M., Rohm, M. and Herzig, S. (2024) Cancer Cachexia: Multilevel Metabolic Dysfunction. Nature Metabolism, 6, 2222-2245. [Google Scholar] [CrossRef
[52] Wang, T., Zhou, D. and Hong, Z. (2025) Sarcopenia and Cachexia: Molecular Mechanisms and Therapeutic Interventions. MedComm, 6, e70030. [Google Scholar] [CrossRef
[53] Kaltenecker, D., Fisker Schmidt, S., Weber, P., et al. (2025) Functional Liver Genomics Identifies Hepatokines Promoting Wasting in Cancer Cachexia. Cell, 188, 4549-4566.e22.
[54] Demaria, M. (2025) Cancer Treatments Accelerate Ageing. Nature Reviews Cancer, 25, 751-752. [Google Scholar] [CrossRef
[55] Oncolibrary (2025) How Chemotherapy Affects Cancer and Normal Cells: Mechanisms, Side Effects and Long-Term Risks. https://oncodaily.com/oncolibrary/chemotherapy-2
[56] Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., et al. (2023) Increased Cellular Senescence in Doxorubicin-Induced Murine Ovarian Injury: Effect of Senolytics. GeroScience, 45, 1775-1790. [Google Scholar] [CrossRef
[57] Whitaker, S.J. (1992) DNA Damage by Drugs and Radiation: What Is Important and How Is It Measured? European Journal of Cancer, 28, 273-276. [Google Scholar] [CrossRef
[58] Sishc, B.J., Nelson, C.B., McKenna, M.J., Battaglia, C.L.R., Herndon, A., Idate, R., et al. (2015) Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Frontiers in Oncology, 5, Article 257. [Google Scholar] [CrossRef
[59] Uekusa, R., Yokoi, A., Watanabe, E., Yoshida, K., Yoshihara, M., Tamauchi, S., et al. (2024) Safety Assessments and Clinical Features of PARP Inhibitors from Real-World Data of Japanese Patients with Ovarian Cancer. Scientific Reports, 14, Article No. 12595. [Google Scholar] [CrossRef
[60] Jin, W., Yang, Q., Zhang, Z. and Li, J. (2024) Olaparib-Associated Toxicity in Cancer Patients: A Systematic Review and Meta-Analysis. European Journal of Clinical Pharmacology, 81, 65-81. [Google Scholar] [CrossRef
[61] Justice, J.N., Nambiar, A.M., Tchkonia, T., LeBrasseur, N.K., Pascual, R., Hashmi, S.K., et al. (2019) Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-in-Human, Open-Label, Pilot Study. EBioMedicine, 40, 554-563. [Google Scholar] [CrossRef
[62] Power, H., Valtchev, P., Dehghani, F. and Schindeler, A. (2023) Strategies for Senolytic Drug Discovery. Aging Cell, 22, e13948. [Google Scholar] [CrossRef
[63] Magkouta, S., Veroutis, D., Papaspyropoulos, A., Georgiou, M., Lougiakis, N., Pippa, N., et al. (2024) Generation of a Selective Senolytic Platform Using a Micelle-Encapsulated Sudan Black B Conjugated Analog. Nature Aging, 5, 162-175. [Google Scholar] [CrossRef
[64] Bi, Y., Qiao, X., Cai, Z., Zhao, H., Ye, R., Liu, Q., et al. (2025) Exosomal miR-302b Rejuvenates Aging Mice by Reversing the Proliferative Arrest of Senescent Cells. Cell Metabolism, 37, 527-541.e6. [Google Scholar] [CrossRef
[65] Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E.R., Pirtskhalava, T., et al. (2015) JAK Inhibition Alleviates the Cellular Senescence-Associated Secretory Phenotype and Frailty in Old Age. Proceedings of the National Academy of Sciences, 112, E6301-E6310. [Google Scholar] [CrossRef
[66] Yasuda, S., Horinaka, M., Iizumi, Y., Goi, W., Sukeno, M. and Sakai, T. (2022) Oridonin Inhibits SASP by Blocking p38 and NF-κB Pathways in Senescent Cells. Biochemical and Biophysical Research Communications, 590, 55-62. [Google Scholar] [CrossRef
[67] Assi, G. and Faour, W.H. (2023) Arginine Deprivation as a Treatment Approach Targeting Cancer Cell Metabolism and Survival: A Review of the Literature. European Journal of Pharmacology, 953, Article ID: 175830. [Google Scholar] [CrossRef
[68] Ari, F., Napieralski, R., Akgun, O., Magdolen, V. and Ulukaya, E. (2021) Epigenetic Modulators Combination with Chemotherapy in Breast Cancer Cells. Cell Biochemistry and Function, 39, 571-583. [Google Scholar] [CrossRef
[69] Patnaik, E., Madu, C. and Lu, Y. (2023) Epigenetic Modulators as Therapeutic Agents in Cancer. International Journal of Molecular Sciences, 24, Article No. 14964. [Google Scholar] [CrossRef
[70] Ogrodnik, M., Carlos Acosta, J., Adams, P.D., d’Adda di Fagagna, F., Baker, D.J., Bishop, C.L., et al. (2024) Guidelines for Minimal Information on Cellular Senescence Experimentation in Vivo. Cell, 187, 4150-4175. [Google Scholar] [CrossRef
[71] Gurkar, A.U., Gerencser, A.A., Mora, A.L., Nelson, A.C., Zhang, A.R., Lagnado, A.B., et al. (2023) Spatial Mapping of Cellular Senescence: Emerging Challenges and Opportunities. Nature Aging, 3, 776-790. [Google Scholar] [CrossRef
[72] Kusumoto, D., Seki, T., Sawada, H., Kunitomi, A., Katsuki, T., Kimura, M., et al. (2021) Anti-Senescent Drug Screening by Deep Learning-Based Morphology Senescence Scoring. Nature Communications, 12, Article No. 257. [Google Scholar] [CrossRef
[73] Gkioni, L., Nespital, T., Baghdadi, M., Monzó, C., Bali, J., Nassr, T., et al. (2025) The Geroprotectors Trametinib and Rapamycin Combine Additively to Extend Mouse Healthspan and Lifespan. Nature Aging, 5, 1249-1265. [Google Scholar] [CrossRef
[74] Cai, X., Bowman, R.L. and Trowbridge, J.J. (2025) Clonal Hematopoiesis in Myeloid Malignancies and Solid Tumors. Nature Cancer, 6, 1133-1144. [Google Scholar] [CrossRef
[75] Scherer, M., Singh, I., Braun, M.M., Szu-Tu, C., Sanchez Sanchez, P., Lindenhofer, D., et al. (2025) Clonal Tracing with Somatic Epimutations Reveals Dynamics of Blood Ageing. Nature, 643, 478-487. [Google Scholar] [CrossRef