|
[1]
|
Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. [Google Scholar] [CrossRef]
|
|
[2]
|
Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45. [Google Scholar] [CrossRef]
|
|
[3]
|
Giaquinto, A.N., Sung, H., Newman, L.A., Freedman, R.A., Smith, R.A., Star, J., et al. (2024) Breast Cancer Statistics 2024. CA: A Cancer Journal for Clinicians, 74, 477-495. [Google Scholar] [CrossRef]
|
|
[4]
|
Siegel, R.L., Wagle, N.S., Cercek, A., Smith, R.A. and Jemal, A. (2023) Colorectal Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 233-254. [Google Scholar] [CrossRef]
|
|
[5]
|
Cui, H., Zhang, W., Zhang, L., Qu, Y., Xu, Z., Tan, Z., et al. (2024) Risk Factors for Prostate Cancer: An Umbrella Review of Prospective Observational Studies and Mendelian Randomization Analyses. PLOS Medicine, 21, e1004362. [Google Scholar] [CrossRef]
|
|
[6]
|
Eisfeld, C., Kajüter, H., Möller, L., Wellmann, I., Shumilov, E. and Stang, A. (2023) Time Trends in Survival and Causes of Death in Multiple Myeloma: A Population-Based Study from Germany. BMC Cancer, 23, Article No. 317. [Google Scholar] [CrossRef]
|
|
[7]
|
Wang, W., Kang, L., Zhang, J., Li, H., Cao, T. and He, S. (2023) Age and Treatment Disparities in Survival of Primary Malignant Cardiac Tumors: An Analysis of over 40 Years and 500 Patients. Journal of Thoracic Disease, 15, 4434-4444. [Google Scholar] [CrossRef]
|
|
[8]
|
Krigers, A., Demetz, M., Thomé, C. and Freyschlag, C.F. (2021) Age Is Associated with Unfavorable Neuropathological and Radiological Features and Poor Outcome in Patients with WHO Grade 2 and 3 Gliomas. Scientific Reports, 11, Article No. 17380. [Google Scholar] [CrossRef]
|
|
[9]
|
López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. and Kroemer, G. (2023) Meta-Hallmarks of Aging and Cancer. Cell Metabolism, 35, 12-35. [Google Scholar] [CrossRef]
|
|
[10]
|
Kroemer, G., Maier, A.B., Cuervo, A.M., Gladyshev, V.N., Ferrucci, L., Gorbunova, V., et al. (2025) From Geroscience to Precision Geromedicine: Understanding and Managing Aging. Cell, 188, 2043-2062. [Google Scholar] [CrossRef]
|
|
[11]
|
Liu, Y., Su, Z., Tavana, O. and Gu, W. (2024) Understanding the Complexity of P53 in a New Era of Tumor Suppression. Cancer Cell, 42, 946-967. [Google Scholar] [CrossRef]
|
|
[12]
|
Lanna, A. (2025) Unexpected Links between Cancer and Telomere State. Seminars in Cancer Biology, 110, 46-55. [Google Scholar] [CrossRef]
|
|
[13]
|
LaBella, K.A., Hsu, W., Li, J., Qi, Y., Liu, Y., Liu, J., et al. (2024) Telomere Dysfunction Alters Intestinal Stem Cell Dynamics to Promote Cancer. Developmental Cell, 59, 1475-1486.e5. [Google Scholar] [CrossRef]
|
|
[14]
|
Nault, J.C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., et al. (2013) High Frequency of Telomerase Reverse-Transcriptase Promoter Somatic Mutations in Hepatocellular Carcinoma and Preneoplastic Lesions. Nature Communications, 4, Article No. 2218. [Google Scholar] [CrossRef]
|
|
[15]
|
Wu, X., Amos, C.I., Zhu, Y., Zhao, H., Grossman, B.H., Shay, J.W., et al. (2003) Telomere Dysfunction: A Potential Cancer Predisposition Factor. JNCI Journal of the National Cancer Institute, 95, 1211-1218. [Google Scholar] [CrossRef]
|
|
[16]
|
McGrath, M., Wong, J.Y.Y., Michaud, D., Hunter, D.J. and De Vivo, I. (2007) Telomere Length, Cigarette Smoking, and Bladder Cancer Risk in Men and Women. Cancer Epidemiology, Biomarkers & Prevention, 16, 815-819. [Google Scholar] [CrossRef]
|
|
[17]
|
Chen, C., Feng, W., Lim, P.X., Kass, E.M. and Jasin, M. (2018) Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annual Review of Cancer Biology, 2, 313-336. [Google Scholar] [CrossRef]
|
|
[18]
|
Yoshida, K. and Miki, Y. (2004) Role of BRCA1 and BRCA2 as Regulators of DNA Repair, Transcription, and Cell Cycle in Response to DNA Damage. Cancer Science, 95, 866-871. [Google Scholar] [CrossRef]
|
|
[19]
|
Ren, L., Yao, R., Hou, T., Liu, C., Zhao, F., Chen, X., et al. (2025) Pan-Cancer Analysis of Homologous Recombination Deficiency and Homologous Recombination Repair-associated Gene Alterations in Solid Tumors from a Large Asian Cohort. BMC Cancer, 25, Article No. 946. [Google Scholar] [CrossRef]
|
|
[20]
|
Maki, Y., Kono, Y., Ozato, T., Yamamoto, H., Hirasawa, A., Ennishi, D., et al. (2025) Distinct Age-Related Effects of Homologous Recombination Deficiency on Genomic Profiling and Treatment Efficacy in Gastric Cancer. Journal of Gastroenterology, 60, 1232-1241. [Google Scholar] [CrossRef]
|
|
[21]
|
Xu, Q., Wen, Y., Huang, T., Li, H., Liu, X., Shi, S., et al. (2025) The Distinct Landscape of Tumor Immune Microenvironment in Homologous Recombination Deficient Cancers. Biomarker Research, 13, Article No. 108. [Google Scholar] [CrossRef]
|
|
[22]
|
Vinayak, S., Tolaney, S.M., Schwartzberg, L., Mita, M., McCann, G., Tan, A.R., et al. (2019) Open-Label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncology, 5, 1132-1140. [Google Scholar] [CrossRef]
|
|
[23]
|
Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978. [Google Scholar] [CrossRef]
|
|
[24]
|
Krishnamurty, A.T., Shyer, J.A., Thai, M., Gandham, V., Buechler, M.B., Yang, Y.A., et al. (2022) LRRC15+ Myofibroblasts Dictate the Stromal Setpoint to Suppress Tumour Immunity. Nature, 611, 148-154. [Google Scholar] [CrossRef]
|
|
[25]
|
Guan, X., LaPak, K.M., Hennessey, R.C., Yu, C.Y., Shakya, R., Zhang, J., et al. (2017) Stromal Senescence by Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Molecular Cancer Research, 15, 237-249. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, C., Xu, G., Jia, W., Li, J., Ma, J., Ren, W., et al. (2012) Activation of STAT3 Signal Pathway Correlates with Twist and E-Cadherin Expression in Hepatocellular Carcinoma and Their Clinical Significance. Journal of Surgical Research, 174, 120-129. [Google Scholar] [CrossRef]
|
|
[27]
|
Dai, X.L., et al. (2024) The Marine Natural Product Trichobotrysin B Inhibits Proliferation and Promotes Apoptosis of Human Glioma Cells via the IL-6-Mediated STAT3/JAK Signaling Pathway. Smart Materials in Medicine, 5, 66-74.
|
|
[28]
|
Guo, Y., Ayers, J.L., Carter, K.T., Wang, T., Maden, S.K., Edmond, D., et al. (2019) Senescence-Associated Tissue Microenvironment Promotes Colon Cancer Formation through the Secretory Factor GDF15. Aging Cell, 18, e13013. [Google Scholar] [CrossRef]
|
|
[29]
|
Wang, Y., Zhang, H., Wang, M., He, J., Guo, H., Li, L., et al. (2021) CCNB2/SASP/Cathepsin B & PGE2 Axis Induce Cell Senescence Mediated Malignant Transformation. International Journal of Biological Sciences, 17, 3538-3553. [Google Scholar] [CrossRef]
|
|
[30]
|
Luo, J., Sun, T., Liu, Z., Liu, Y., Liu, J., Wang, S., et al. (2025) Persistent Accumulation of Therapy-Induced Senescent Cells: An Obstacle to Long-Term Cancer Treatment Efficacy. International Journal of Oral Science, 17, Article No. 59. [Google Scholar] [CrossRef]
|
|
[31]
|
Fan, G., Yu, B., Tang, L., Zhu, R., Chen, J., Zhu, Y., et al. (2024) TSPAN8+ Myofibroblastic Cancer-Associated Fibroblasts Promote Chemoresistance in Patients with Breast Cancer. Science Translational Medicine, 16, eadj5705. [Google Scholar] [CrossRef]
|
|
[32]
|
Fu, Y., Wang, B., Alu, A., Hong, W., Lei, H., He, X., et al. (2025) Immunosenescence: Signaling Pathways, Diseases and Therapeutic Targets. Signal Transduction and Targeted Therapy, 10, Article No. 250. [Google Scholar] [CrossRef]
|
|
[33]
|
Goyani, P., Christodoulou, R. and Vassiliou, E. (2024) Immunosenescence: Aging and Immune System Decline. Vaccines, 12, Article No. 1314. [Google Scholar] [CrossRef]
|
|
[34]
|
Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K. and Anderson, A.C. (2010) Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. Journal of Experimental Medicine, 207, 2187-2194. [Google Scholar] [CrossRef]
|
|
[35]
|
Giunco, S., Petrara, M.R., Bergamo, F., Del Bianco, P., Zanchetta, M., Carmona, F., et al. (2019) Immune Senescence and Immune Activation in Elderly Colorectal Cancer Patients. Aging, 11, 3864-3875. [Google Scholar] [CrossRef]
|
|
[36]
|
Park, M.D., Le Berichel, J., Hamon, P., Wilk, C.M., Belabed, M., Yatim, N., et al. (2024) Hematopoietic Aging Promotes Cancer by Fueling Il-1⍺-Driven Emergency Myelopoiesis. Science, 386, eadn0327. [Google Scholar] [CrossRef]
|
|
[37]
|
Hänggi, K., Li, J., Gangadharan, A., Liu, X., Celias, D.P., Osunmakinde, O., et al. (2024) Interleukin-1α Release during Necrotic-Like Cell Death Generates Myeloid-Driven Immunosuppression That Restricts Anti-Tumor Immunity. Cancer Cell, 42, 2015-2031.e11. [Google Scholar] [CrossRef]
|
|
[38]
|
Rodríguez, P.C. and Ochoa, A.C. (2008) Arginine Regulation by Myeloid Derived Suppressor Cells and Tolerance in Cancer: Mechanisms and Therapeutic Perspectives. Immunological Reviews, 222, 180-191. [Google Scholar] [CrossRef]
|
|
[39]
|
Liu, N., Wu, J., Deng, E., Zhong, J., Wei, B., Cai, T., et al. (2025) Immunotherapy and Senolytics in Head and Neck Squamous Cell Carcinoma: Phase 2 Trial Results. Nature Medicine, 31, 3047-3061. [Google Scholar] [CrossRef]
|
|
[40]
|
Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J., Lapidus, J., et al. (2021) Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nature Metabolism, 3, 274-286. [Google Scholar] [CrossRef]
|
|
[41]
|
Jin, L., Shi, L. and Huang, W. (2024) The Role of Bile Acids in Human Aging. Medical Review, 4, 154-157. [Google Scholar] [CrossRef]
|
|
[42]
|
Crossland, N.A., Beck, S., Tan, W.Y., Lo, M., Mason, J.B., Zhang, C., et al. (2023) Fecal Microbiota Transplanted from Old Mice Promotes More Colonic Inflammation, Proliferation, and Tumor Formation in Azoxymethane-Treated A/J Mice than Microbiota Originating from Young Mice. Gut Microbes, 15, Article ID: 2288187. [Google Scholar] [CrossRef]
|
|
[43]
|
Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021) Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39, 708-724.e11. [Google Scholar] [CrossRef]
|
|
[44]
|
Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V.K. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517. [Google Scholar] [CrossRef]
|
|
[45]
|
Ye, Z., Chen, W., Li, G., Huang, J. and Lei, J. (2023) Tissue-Derived Extracellular Vesicles in Cancer Progression: Mechanisms, Roles, and Potential Applications. Cancer and Metastasis Reviews, 43, 575-595. [Google Scholar] [CrossRef]
|
|
[46]
|
Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalamah, H., et al. (2025) Tumor Extracellular Vesicle-Derived PD-L1 Promotes T Cell Senescence through Lipid Metabolism Reprogramming. Science Translational Medicine, 17, eadm7269. [Google Scholar] [CrossRef]
|
|
[47]
|
Wang, G., Li, J., Bojmar, L., Chen, H., Li, Z., Tobias, G.C., et al. (2023) Tumour Extracellular Vesicles and Particles Induce Liver Metabolic Dysfunction. Nature, 618, 374-382. [Google Scholar] [CrossRef]
|
|
[48]
|
Pietras, E.M., Mirantes-Barbeito, C., Fong, S., Loeffler, D., Kovtonyuk, L.V., Zhang, S., et al. (2016) Chronic Interleukin-1 Exposure Drives Haematopoietic Stem Cells Towards Precocious Myeloid Differentiation at the Expense of Self-Renewal. Nature Cell Biology, 18, 607-618. [Google Scholar] [CrossRef]
|
|
[49]
|
Mitchell, C.A., Verovskaya, E.V., Calero-Nieto, F.J., Olson, O.C., Swann, J.W., Wang, X., et al. (2023) Stromal Niche Inflammation Mediated by IL-1 Signalling Is a Targetable Driver of Haematopoietic Ageing. Nature Cell Biology, 25, 30-41. [Google Scholar] [CrossRef]
|
|
[50]
|
Colmone, A., Amorim, M., Pontier, A.L., Wang, S., Jablonski, E. and Sipkins, D.A. (2008) Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells. Science, 322, 1861-1865. [Google Scholar] [CrossRef]
|
|
[51]
|
Berriel Diaz, M., Rohm, M. and Herzig, S. (2024) Cancer Cachexia: Multilevel Metabolic Dysfunction. Nature Metabolism, 6, 2222-2245. [Google Scholar] [CrossRef]
|
|
[52]
|
Wang, T., Zhou, D. and Hong, Z. (2025) Sarcopenia and Cachexia: Molecular Mechanisms and Therapeutic Interventions. MedComm, 6, e70030. [Google Scholar] [CrossRef]
|
|
[53]
|
Kaltenecker, D., Fisker Schmidt, S., Weber, P., et al. (2025) Functional Liver Genomics Identifies Hepatokines Promoting Wasting in Cancer Cachexia. Cell, 188, 4549-4566.e22.
|
|
[54]
|
Demaria, M. (2025) Cancer Treatments Accelerate Ageing. Nature Reviews Cancer, 25, 751-752. [Google Scholar] [CrossRef]
|
|
[55]
|
Oncolibrary (2025) How Chemotherapy Affects Cancer and Normal Cells: Mechanisms, Side Effects and Long-Term Risks. https://oncodaily.com/oncolibrary/chemotherapy-2
|
|
[56]
|
Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., et al. (2023) Increased Cellular Senescence in Doxorubicin-Induced Murine Ovarian Injury: Effect of Senolytics. GeroScience, 45, 1775-1790. [Google Scholar] [CrossRef]
|
|
[57]
|
Whitaker, S.J. (1992) DNA Damage by Drugs and Radiation: What Is Important and How Is It Measured? European Journal of Cancer, 28, 273-276. [Google Scholar] [CrossRef]
|
|
[58]
|
Sishc, B.J., Nelson, C.B., McKenna, M.J., Battaglia, C.L.R., Herndon, A., Idate, R., et al. (2015) Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Frontiers in Oncology, 5, Article 257. [Google Scholar] [CrossRef]
|
|
[59]
|
Uekusa, R., Yokoi, A., Watanabe, E., Yoshida, K., Yoshihara, M., Tamauchi, S., et al. (2024) Safety Assessments and Clinical Features of PARP Inhibitors from Real-World Data of Japanese Patients with Ovarian Cancer. Scientific Reports, 14, Article No. 12595. [Google Scholar] [CrossRef]
|
|
[60]
|
Jin, W., Yang, Q., Zhang, Z. and Li, J. (2024) Olaparib-Associated Toxicity in Cancer Patients: A Systematic Review and Meta-Analysis. European Journal of Clinical Pharmacology, 81, 65-81. [Google Scholar] [CrossRef]
|
|
[61]
|
Justice, J.N., Nambiar, A.M., Tchkonia, T., LeBrasseur, N.K., Pascual, R., Hashmi, S.K., et al. (2019) Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-in-Human, Open-Label, Pilot Study. EBioMedicine, 40, 554-563. [Google Scholar] [CrossRef]
|
|
[62]
|
Power, H., Valtchev, P., Dehghani, F. and Schindeler, A. (2023) Strategies for Senolytic Drug Discovery. Aging Cell, 22, e13948. [Google Scholar] [CrossRef]
|
|
[63]
|
Magkouta, S., Veroutis, D., Papaspyropoulos, A., Georgiou, M., Lougiakis, N., Pippa, N., et al. (2024) Generation of a Selective Senolytic Platform Using a Micelle-Encapsulated Sudan Black B Conjugated Analog. Nature Aging, 5, 162-175. [Google Scholar] [CrossRef]
|
|
[64]
|
Bi, Y., Qiao, X., Cai, Z., Zhao, H., Ye, R., Liu, Q., et al. (2025) Exosomal miR-302b Rejuvenates Aging Mice by Reversing the Proliferative Arrest of Senescent Cells. Cell Metabolism, 37, 527-541.e6. [Google Scholar] [CrossRef]
|
|
[65]
|
Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E.R., Pirtskhalava, T., et al. (2015) JAK Inhibition Alleviates the Cellular Senescence-Associated Secretory Phenotype and Frailty in Old Age. Proceedings of the National Academy of Sciences, 112, E6301-E6310. [Google Scholar] [CrossRef]
|
|
[66]
|
Yasuda, S., Horinaka, M., Iizumi, Y., Goi, W., Sukeno, M. and Sakai, T. (2022) Oridonin Inhibits SASP by Blocking p38 and NF-κB Pathways in Senescent Cells. Biochemical and Biophysical Research Communications, 590, 55-62. [Google Scholar] [CrossRef]
|
|
[67]
|
Assi, G. and Faour, W.H. (2023) Arginine Deprivation as a Treatment Approach Targeting Cancer Cell Metabolism and Survival: A Review of the Literature. European Journal of Pharmacology, 953, Article ID: 175830. [Google Scholar] [CrossRef]
|
|
[68]
|
Ari, F., Napieralski, R., Akgun, O., Magdolen, V. and Ulukaya, E. (2021) Epigenetic Modulators Combination with Chemotherapy in Breast Cancer Cells. Cell Biochemistry and Function, 39, 571-583. [Google Scholar] [CrossRef]
|
|
[69]
|
Patnaik, E., Madu, C. and Lu, Y. (2023) Epigenetic Modulators as Therapeutic Agents in Cancer. International Journal of Molecular Sciences, 24, Article No. 14964. [Google Scholar] [CrossRef]
|
|
[70]
|
Ogrodnik, M., Carlos Acosta, J., Adams, P.D., d’Adda di Fagagna, F., Baker, D.J., Bishop, C.L., et al. (2024) Guidelines for Minimal Information on Cellular Senescence Experimentation in Vivo. Cell, 187, 4150-4175. [Google Scholar] [CrossRef]
|
|
[71]
|
Gurkar, A.U., Gerencser, A.A., Mora, A.L., Nelson, A.C., Zhang, A.R., Lagnado, A.B., et al. (2023) Spatial Mapping of Cellular Senescence: Emerging Challenges and Opportunities. Nature Aging, 3, 776-790. [Google Scholar] [CrossRef]
|
|
[72]
|
Kusumoto, D., Seki, T., Sawada, H., Kunitomi, A., Katsuki, T., Kimura, M., et al. (2021) Anti-Senescent Drug Screening by Deep Learning-Based Morphology Senescence Scoring. Nature Communications, 12, Article No. 257. [Google Scholar] [CrossRef]
|
|
[73]
|
Gkioni, L., Nespital, T., Baghdadi, M., Monzó, C., Bali, J., Nassr, T., et al. (2025) The Geroprotectors Trametinib and Rapamycin Combine Additively to Extend Mouse Healthspan and Lifespan. Nature Aging, 5, 1249-1265. [Google Scholar] [CrossRef]
|
|
[74]
|
Cai, X., Bowman, R.L. and Trowbridge, J.J. (2025) Clonal Hematopoiesis in Myeloid Malignancies and Solid Tumors. Nature Cancer, 6, 1133-1144. [Google Scholar] [CrossRef]
|
|
[75]
|
Scherer, M., Singh, I., Braun, M.M., Szu-Tu, C., Sanchez Sanchez, P., Lindenhofer, D., et al. (2025) Clonal Tracing with Somatic Epimutations Reveals Dynamics of Blood Ageing. Nature, 643, 478-487. [Google Scholar] [CrossRef]
|