肿瘤与衰老互作的基础研究进展与临床启示
Basic Research Advances and Clinical Implications of Tumor-Aging Interactions
DOI: 10.12677/WJCR.2026.161005, PDF,    科研立项经费支持
作者: 王羽馨*:重庆理工大学药学与生物工程学院,重庆;龙海霞, 黄佳妮#:陆军军医大学第二附属医院肿瘤研究所,重庆
关键词: 肿瘤–衰老轴细胞衰老衰老相关分泌表型免疫衰老Tumor-Aging Axis Cellular Senescence Senescence-Associated Secretory Phenotype (SASP) Immunosenescence
摘要: 恶性肿瘤是本世纪最严重威胁人类生命与健康的重大疾病之一,深入探究其发生与发展机制具有重要的科学意义和临床价值。机体衰老不仅是肿瘤发生发展的重要诱因,同时肿瘤的发展又会反过来加剧机体衰老,二者共同构成了双向恶性循环的肿瘤–衰老轴。一方面,衰老引发的基因组不稳定的增加、衰老相关分泌表型分子(SASP)的释放、机体免疫功能的衰退和肠道菌群的失衡等因素,均可促进肿瘤的发生发展;另一方面,肿瘤的演进及治疗过程会进一步诱导炎症因子和细胞外囊泡的释放,驱动慢性炎症反应,从而加速机体的衰老。在本综述中,我们将系统梳理肿瘤–衰老轴的核心内涵,总结衰老在肿瘤发生发展中的关键作用机制,阐述肿瘤及其治疗如何加速机体衰老进程,并进一步探讨靶向肿瘤–衰老轴干预策略及其潜在前景与挑战。
Abstract: Malignant tumors represent one of the most critical threats to human life and health in this century. A deeper understanding of the mechanisms underlying their initiation and progression is of great scientific and clinical importance. Organismal aging is not only a major predisposing factor for tumor development but is also exacerbated by tumor progression, together forming a bidirectional vicious cycle referred to as the tumor-aging axis. On one hand, aging-related factors, including increased genomic instability, the release of senescence-associated secretory phenotype (SASP) molecules, declining immune function, and gut microbiota dysbiosis, collectively promote tumor initiation and progression. On the other hand, tumor evolution and anticancer treatments further induce the release of inflammatory cytokines and extracellular vesicles, fueling chronic inflammatory responses that accelerate systemic aging. In this review, we systematically outline the core concepts of the tumor-aging axis, summarize key mechanisms by which aging influences tumor development, elucidate how tumors and their treatments drive aging, and discuss potential intervention strategies targeting this axis, along with their prospects and challenges.
文章引用:王羽馨, 龙海霞, 黄佳妮. 肿瘤与衰老互作的基础研究进展与临床启示[J]. 世界肿瘤研究, 2026, 16(1): 32-40. https://doi.org/10.12677/WJCR.2026.161005

参考文献

[1] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. [Google Scholar] [CrossRef
[2] Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H. and Jemal, A. (2025) Cancer Statistics, 2025. CA: A Cancer Journal for Clinicians, 75, 10-45. [Google Scholar] [CrossRef
[3] Giaquinto, A.N., Sung, H., Newman, L.A., Freedman, R.A., Smith, R.A., Star, J., et al. (2024) Breast Cancer Statistics 2024. CA: A Cancer Journal for Clinicians, 74, 477-495. [Google Scholar] [CrossRef
[4] Siegel, R.L., Wagle, N.S., Cercek, A., Smith, R.A. and Jemal, A. (2023) Colorectal Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 233-254. [Google Scholar] [CrossRef
[5] Cui, H., Zhang, W., Zhang, L., Qu, Y., Xu, Z., Tan, Z., et al. (2024) Risk Factors for Prostate Cancer: An Umbrella Review of Prospective Observational Studies and Mendelian Randomization Analyses. PLOS Medicine, 21, e1004362. [Google Scholar] [CrossRef
[6] Eisfeld, C., Kajüter, H., Möller, L., Wellmann, I., Shumilov, E. and Stang, A. (2023) Time Trends in Survival and Causes of Death in Multiple Myeloma: A Population-Based Study from Germany. BMC Cancer, 23, Article No. 317. [Google Scholar] [CrossRef
[7] Wang, W., Kang, L., Zhang, J., Li, H., Cao, T. and He, S. (2023) Age and Treatment Disparities in Survival of Primary Malignant Cardiac Tumors: An Analysis of over 40 Years and 500 Patients. Journal of Thoracic Disease, 15, 4434-4444. [Google Scholar] [CrossRef
[8] Krigers, A., Demetz, M., Thomé, C. and Freyschlag, C.F. (2021) Age Is Associated with Unfavorable Neuropathological and Radiological Features and Poor Outcome in Patients with WHO Grade 2 and 3 Gliomas. Scientific Reports, 11, Article No. 17380. [Google Scholar] [CrossRef
[9] López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. and Kroemer, G. (2023) Meta-Hallmarks of Aging and Cancer. Cell Metabolism, 35, 12-35. [Google Scholar] [CrossRef
[10] Kroemer, G., Maier, A.B., Cuervo, A.M., Gladyshev, V.N., Ferrucci, L., Gorbunova, V., et al. (2025) From Geroscience to Precision Geromedicine: Understanding and Managing Aging. Cell, 188, 2043-2062. [Google Scholar] [CrossRef
[11] Liu, Y., Su, Z., Tavana, O. and Gu, W. (2024) Understanding the Complexity of P53 in a New Era of Tumor Suppression. Cancer Cell, 42, 946-967. [Google Scholar] [CrossRef
[12] Lanna, A. (2025) Unexpected Links between Cancer and Telomere State. Seminars in Cancer Biology, 110, 46-55. [Google Scholar] [CrossRef
[13] LaBella, K.A., Hsu, W., Li, J., Qi, Y., Liu, Y., Liu, J., et al. (2024) Telomere Dysfunction Alters Intestinal Stem Cell Dynamics to Promote Cancer. Developmental Cell, 59, 1475-1486.e5. [Google Scholar] [CrossRef
[14] Nault, J.C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., et al. (2013) High Frequency of Telomerase Reverse-Transcriptase Promoter Somatic Mutations in Hepatocellular Carcinoma and Preneoplastic Lesions. Nature Communications, 4, Article No. 2218. [Google Scholar] [CrossRef
[15] Wu, X., Amos, C.I., Zhu, Y., Zhao, H., Grossman, B.H., Shay, J.W., et al. (2003) Telomere Dysfunction: A Potential Cancer Predisposition Factor. JNCI Journal of the National Cancer Institute, 95, 1211-1218. [Google Scholar] [CrossRef
[16] McGrath, M., Wong, J.Y.Y., Michaud, D., Hunter, D.J. and De Vivo, I. (2007) Telomere Length, Cigarette Smoking, and Bladder Cancer Risk in Men and Women. Cancer Epidemiology, Biomarkers & Prevention, 16, 815-819. [Google Scholar] [CrossRef
[17] Chen, C., Feng, W., Lim, P.X., Kass, E.M. and Jasin, M. (2018) Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. Annual Review of Cancer Biology, 2, 313-336. [Google Scholar] [CrossRef
[18] Yoshida, K. and Miki, Y. (2004) Role of BRCA1 and BRCA2 as Regulators of DNA Repair, Transcription, and Cell Cycle in Response to DNA Damage. Cancer Science, 95, 866-871. [Google Scholar] [CrossRef
[19] Ren, L., Yao, R., Hou, T., Liu, C., Zhao, F., Chen, X., et al. (2025) Pan-Cancer Analysis of Homologous Recombination Deficiency and Homologous Recombination Repair-associated Gene Alterations in Solid Tumors from a Large Asian Cohort. BMC Cancer, 25, Article No. 946. [Google Scholar] [CrossRef
[20] Maki, Y., Kono, Y., Ozato, T., Yamamoto, H., Hirasawa, A., Ennishi, D., et al. (2025) Distinct Age-Related Effects of Homologous Recombination Deficiency on Genomic Profiling and Treatment Efficacy in Gastric Cancer. Journal of Gastroenterology, 60, 1232-1241. [Google Scholar] [CrossRef
[21] Xu, Q., Wen, Y., Huang, T., Li, H., Liu, X., Shi, S., et al. (2025) The Distinct Landscape of Tumor Immune Microenvironment in Homologous Recombination Deficient Cancers. Biomarker Research, 13, Article No. 108. [Google Scholar] [CrossRef
[22] Vinayak, S., Tolaney, S.M., Schwartzberg, L., Mita, M., McCann, G., Tan, A.R., et al. (2019) Open-Label Clinical Trial of Niraparib Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncology, 5, 1132-1140. [Google Scholar] [CrossRef
[23] Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978. [Google Scholar] [CrossRef
[24] Krishnamurty, A.T., Shyer, J.A., Thai, M., Gandham, V., Buechler, M.B., Yang, Y.A., et al. (2022) LRRC15+ Myofibroblasts Dictate the Stromal Setpoint to Suppress Tumour Immunity. Nature, 611, 148-154. [Google Scholar] [CrossRef
[25] Guan, X., LaPak, K.M., Hennessey, R.C., Yu, C.Y., Shakya, R., Zhang, J., et al. (2017) Stromal Senescence by Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Molecular Cancer Research, 15, 237-249. [Google Scholar] [CrossRef
[26] Zhang, C., Xu, G., Jia, W., Li, J., Ma, J., Ren, W., et al. (2012) Activation of STAT3 Signal Pathway Correlates with Twist and E-Cadherin Expression in Hepatocellular Carcinoma and Their Clinical Significance. Journal of Surgical Research, 174, 120-129. [Google Scholar] [CrossRef
[27] Dai, X.L., et al. (2024) The Marine Natural Product Trichobotrysin B Inhibits Proliferation and Promotes Apoptosis of Human Glioma Cells via the IL-6-Mediated STAT3/JAK Signaling Pathway. Smart Materials in Medicine, 5, 66-74.
[28] Guo, Y., Ayers, J.L., Carter, K.T., Wang, T., Maden, S.K., Edmond, D., et al. (2019) Senescence-Associated Tissue Microenvironment Promotes Colon Cancer Formation through the Secretory Factor GDF15. Aging Cell, 18, e13013. [Google Scholar] [CrossRef
[29] Wang, Y., Zhang, H., Wang, M., He, J., Guo, H., Li, L., et al. (2021) CCNB2/SASP/Cathepsin B & PGE2 Axis Induce Cell Senescence Mediated Malignant Transformation. International Journal of Biological Sciences, 17, 3538-3553. [Google Scholar] [CrossRef
[30] Luo, J., Sun, T., Liu, Z., Liu, Y., Liu, J., Wang, S., et al. (2025) Persistent Accumulation of Therapy-Induced Senescent Cells: An Obstacle to Long-Term Cancer Treatment Efficacy. International Journal of Oral Science, 17, Article No. 59. [Google Scholar] [CrossRef
[31] Fan, G., Yu, B., Tang, L., Zhu, R., Chen, J., Zhu, Y., et al. (2024) TSPAN8+ Myofibroblastic Cancer-Associated Fibroblasts Promote Chemoresistance in Patients with Breast Cancer. Science Translational Medicine, 16, eadj5705. [Google Scholar] [CrossRef
[32] Fu, Y., Wang, B., Alu, A., Hong, W., Lei, H., He, X., et al. (2025) Immunosenescence: Signaling Pathways, Diseases and Therapeutic Targets. Signal Transduction and Targeted Therapy, 10, Article No. 250. [Google Scholar] [CrossRef
[33] Goyani, P., Christodoulou, R. and Vassiliou, E. (2024) Immunosenescence: Aging and Immune System Decline. Vaccines, 12, Article No. 1314. [Google Scholar] [CrossRef
[34] Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K. and Anderson, A.C. (2010) Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. Journal of Experimental Medicine, 207, 2187-2194. [Google Scholar] [CrossRef
[35] Giunco, S., Petrara, M.R., Bergamo, F., Del Bianco, P., Zanchetta, M., Carmona, F., et al. (2019) Immune Senescence and Immune Activation in Elderly Colorectal Cancer Patients. Aging, 11, 3864-3875. [Google Scholar] [CrossRef
[36] Park, M.D., Le Berichel, J., Hamon, P., Wilk, C.M., Belabed, M., Yatim, N., et al. (2024) Hematopoietic Aging Promotes Cancer by Fueling Il-1⍺-Driven Emergency Myelopoiesis. Science, 386, eadn0327. [Google Scholar] [CrossRef
[37] Hänggi, K., Li, J., Gangadharan, A., Liu, X., Celias, D.P., Osunmakinde, O., et al. (2024) Interleukin-1α Release during Necrotic-Like Cell Death Generates Myeloid-Driven Immunosuppression That Restricts Anti-Tumor Immunity. Cancer Cell, 42, 2015-2031.e11. [Google Scholar] [CrossRef
[38] Rodríguez, P.C. and Ochoa, A.C. (2008) Arginine Regulation by Myeloid Derived Suppressor Cells and Tolerance in Cancer: Mechanisms and Therapeutic Perspectives. Immunological Reviews, 222, 180-191. [Google Scholar] [CrossRef
[39] Liu, N., Wu, J., Deng, E., Zhong, J., Wei, B., Cai, T., et al. (2025) Immunotherapy and Senolytics in Head and Neck Squamous Cell Carcinoma: Phase 2 Trial Results. Nature Medicine, 31, 3047-3061. [Google Scholar] [CrossRef
[40] Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J., Lapidus, J., et al. (2021) Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nature Metabolism, 3, 274-286. [Google Scholar] [CrossRef
[41] Jin, L., Shi, L. and Huang, W. (2024) The Role of Bile Acids in Human Aging. Medical Review, 4, 154-157. [Google Scholar] [CrossRef
[42] Crossland, N.A., Beck, S., Tan, W.Y., Lo, M., Mason, J.B., Zhang, C., et al. (2023) Fecal Microbiota Transplanted from Old Mice Promotes More Colonic Inflammation, Proliferation, and Tumor Formation in Azoxymethane-Treated A/J Mice than Microbiota Originating from Young Mice. Gut Microbes, 15, Article ID: 2288187. [Google Scholar] [CrossRef
[43] Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021) Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39, 708-724.e11. [Google Scholar] [CrossRef
[44] Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V.K. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517. [Google Scholar] [CrossRef
[45] Ye, Z., Chen, W., Li, G., Huang, J. and Lei, J. (2023) Tissue-Derived Extracellular Vesicles in Cancer Progression: Mechanisms, Roles, and Potential Applications. Cancer and Metastasis Reviews, 43, 575-595. [Google Scholar] [CrossRef
[46] Ma, F., Liu, X., Zhang, Y., Tao, Y., Zhao, L., Abusalamah, H., et al. (2025) Tumor Extracellular Vesicle-Derived PD-L1 Promotes T Cell Senescence through Lipid Metabolism Reprogramming. Science Translational Medicine, 17, eadm7269. [Google Scholar] [CrossRef
[47] Wang, G., Li, J., Bojmar, L., Chen, H., Li, Z., Tobias, G.C., et al. (2023) Tumour Extracellular Vesicles and Particles Induce Liver Metabolic Dysfunction. Nature, 618, 374-382. [Google Scholar] [CrossRef
[48] Pietras, E.M., Mirantes-Barbeito, C., Fong, S., Loeffler, D., Kovtonyuk, L.V., Zhang, S., et al. (2016) Chronic Interleukin-1 Exposure Drives Haematopoietic Stem Cells Towards Precocious Myeloid Differentiation at the Expense of Self-Renewal. Nature Cell Biology, 18, 607-618. [Google Scholar] [CrossRef
[49] Mitchell, C.A., Verovskaya, E.V., Calero-Nieto, F.J., Olson, O.C., Swann, J.W., Wang, X., et al. (2023) Stromal Niche Inflammation Mediated by IL-1 Signalling Is a Targetable Driver of Haematopoietic Ageing. Nature Cell Biology, 25, 30-41. [Google Scholar] [CrossRef
[50] Colmone, A., Amorim, M., Pontier, A.L., Wang, S., Jablonski, E. and Sipkins, D.A. (2008) Leukemic Cells Create Bone Marrow Niches That Disrupt the Behavior of Normal Hematopoietic Progenitor Cells. Science, 322, 1861-1865. [Google Scholar] [CrossRef
[51] Berriel Diaz, M., Rohm, M. and Herzig, S. (2024) Cancer Cachexia: Multilevel Metabolic Dysfunction. Nature Metabolism, 6, 2222-2245. [Google Scholar] [CrossRef
[52] Wang, T., Zhou, D. and Hong, Z. (2025) Sarcopenia and Cachexia: Molecular Mechanisms and Therapeutic Interventions. MedComm, 6, e70030. [Google Scholar] [CrossRef
[53] Kaltenecker, D., Fisker Schmidt, S., Weber, P., et al. (2025) Functional Liver Genomics Identifies Hepatokines Promoting Wasting in Cancer Cachexia. Cell, 188, 4549-4566.e22.
[54] Demaria, M. (2025) Cancer Treatments Accelerate Ageing. Nature Reviews Cancer, 25, 751-752. [Google Scholar] [CrossRef
[55] Oncolibrary (2025) How Chemotherapy Affects Cancer and Normal Cells: Mechanisms, Side Effects and Long-Term Risks. https://oncodaily.com/oncolibrary/chemotherapy-2
[56] Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., et al. (2023) Increased Cellular Senescence in Doxorubicin-Induced Murine Ovarian Injury: Effect of Senolytics. GeroScience, 45, 1775-1790. [Google Scholar] [CrossRef
[57] Whitaker, S.J. (1992) DNA Damage by Drugs and Radiation: What Is Important and How Is It Measured? European Journal of Cancer, 28, 273-276. [Google Scholar] [CrossRef
[58] Sishc, B.J., Nelson, C.B., McKenna, M.J., Battaglia, C.L.R., Herndon, A., Idate, R., et al. (2015) Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Frontiers in Oncology, 5, Article 257. [Google Scholar] [CrossRef
[59] Uekusa, R., Yokoi, A., Watanabe, E., Yoshida, K., Yoshihara, M., Tamauchi, S., et al. (2024) Safety Assessments and Clinical Features of PARP Inhibitors from Real-World Data of Japanese Patients with Ovarian Cancer. Scientific Reports, 14, Article No. 12595. [Google Scholar] [CrossRef
[60] Jin, W., Yang, Q., Zhang, Z. and Li, J. (2024) Olaparib-Associated Toxicity in Cancer Patients: A Systematic Review and Meta-Analysis. European Journal of Clinical Pharmacology, 81, 65-81. [Google Scholar] [CrossRef
[61] Justice, J.N., Nambiar, A.M., Tchkonia, T., LeBrasseur, N.K., Pascual, R., Hashmi, S.K., et al. (2019) Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-in-Human, Open-Label, Pilot Study. EBioMedicine, 40, 554-563. [Google Scholar] [CrossRef
[62] Power, H., Valtchev, P., Dehghani, F. and Schindeler, A. (2023) Strategies for Senolytic Drug Discovery. Aging Cell, 22, e13948. [Google Scholar] [CrossRef
[63] Magkouta, S., Veroutis, D., Papaspyropoulos, A., Georgiou, M., Lougiakis, N., Pippa, N., et al. (2024) Generation of a Selective Senolytic Platform Using a Micelle-Encapsulated Sudan Black B Conjugated Analog. Nature Aging, 5, 162-175. [Google Scholar] [CrossRef
[64] Bi, Y., Qiao, X., Cai, Z., Zhao, H., Ye, R., Liu, Q., et al. (2025) Exosomal miR-302b Rejuvenates Aging Mice by Reversing the Proliferative Arrest of Senescent Cells. Cell Metabolism, 37, 527-541.e6. [Google Scholar] [CrossRef
[65] Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E.R., Pirtskhalava, T., et al. (2015) JAK Inhibition Alleviates the Cellular Senescence-Associated Secretory Phenotype and Frailty in Old Age. Proceedings of the National Academy of Sciences, 112, E6301-E6310. [Google Scholar] [CrossRef
[66] Yasuda, S., Horinaka, M., Iizumi, Y., Goi, W., Sukeno, M. and Sakai, T. (2022) Oridonin Inhibits SASP by Blocking p38 and NF-κB Pathways in Senescent Cells. Biochemical and Biophysical Research Communications, 590, 55-62. [Google Scholar] [CrossRef
[67] Assi, G. and Faour, W.H. (2023) Arginine Deprivation as a Treatment Approach Targeting Cancer Cell Metabolism and Survival: A Review of the Literature. European Journal of Pharmacology, 953, Article ID: 175830. [Google Scholar] [CrossRef
[68] Ari, F., Napieralski, R., Akgun, O., Magdolen, V. and Ulukaya, E. (2021) Epigenetic Modulators Combination with Chemotherapy in Breast Cancer Cells. Cell Biochemistry and Function, 39, 571-583. [Google Scholar] [CrossRef
[69] Patnaik, E., Madu, C. and Lu, Y. (2023) Epigenetic Modulators as Therapeutic Agents in Cancer. International Journal of Molecular Sciences, 24, Article No. 14964. [Google Scholar] [CrossRef
[70] Ogrodnik, M., Carlos Acosta, J., Adams, P.D., d’Adda di Fagagna, F., Baker, D.J., Bishop, C.L., et al. (2024) Guidelines for Minimal Information on Cellular Senescence Experimentation in Vivo. Cell, 187, 4150-4175. [Google Scholar] [CrossRef
[71] Gurkar, A.U., Gerencser, A.A., Mora, A.L., Nelson, A.C., Zhang, A.R., Lagnado, A.B., et al. (2023) Spatial Mapping of Cellular Senescence: Emerging Challenges and Opportunities. Nature Aging, 3, 776-790. [Google Scholar] [CrossRef
[72] Kusumoto, D., Seki, T., Sawada, H., Kunitomi, A., Katsuki, T., Kimura, M., et al. (2021) Anti-Senescent Drug Screening by Deep Learning-Based Morphology Senescence Scoring. Nature Communications, 12, Article No. 257. [Google Scholar] [CrossRef
[73] Gkioni, L., Nespital, T., Baghdadi, M., Monzó, C., Bali, J., Nassr, T., et al. (2025) The Geroprotectors Trametinib and Rapamycin Combine Additively to Extend Mouse Healthspan and Lifespan. Nature Aging, 5, 1249-1265. [Google Scholar] [CrossRef
[74] Cai, X., Bowman, R.L. and Trowbridge, J.J. (2025) Clonal Hematopoiesis in Myeloid Malignancies and Solid Tumors. Nature Cancer, 6, 1133-1144. [Google Scholar] [CrossRef
[75] Scherer, M., Singh, I., Braun, M.M., Szu-Tu, C., Sanchez Sanchez, P., Lindenhofer, D., et al. (2025) Clonal Tracing with Somatic Epimutations Reveals Dynamics of Blood Ageing. Nature, 643, 478-487. [Google Scholar] [CrossRef