非齐次四阶薛定号算子谱测度的加权估计
Weighted Estimates for the Spectral Projection of Inhomogeneous Fourth-Order Schro¨dinger Operator in R2
摘要: 非齐次四阶薛定号算子 ∆2 − ∆ + V 在非线性光学中有着重要应用. 本文将在二维欧氏空间中建立算子的谱测度的加权估计. 此外,对算子的能量阁值 0 分三类:正则、共振、特征值进行讨论,给出共振和特征值对谱测度加权估计的影响。
Abstract: The inhomogeneous fourth-order Schrodinger operator ∆2 − ∆ + V has important applications in nonlinear optics. This paper establishes weighted estimates for the spectral measure of this operator in two-dimensional Euclidean space. Moreover, the energy threshold 0 is classified into three types: regular, resonance, and eigenvalue. We discuss the impact of resonances and eigenvalues on the weighted estimates of the spectral measure.
文章引用:李娅玲, 冯红亮. 非齐次四阶薛定号算子谱测度的加权估计[J]. 理论数学, 2026, 16(1): 146-164. https://doi.org/10.12677/PM.2026.161018

参考文献

[1] Karpman, V.I. (1994) Solitons of the Fourth Order Nonlinear Schro¨dinger Equation. Physics Letters A, 193, 355-358. [Google Scholar] [CrossRef
[2] Karpman, V.I. (1996) Stabilization of Soliton Instabilities by Higher Order Dispersion: Kdv- Type Equations. Physics Letters A, 210, 77-84.[CrossRef
[3] Karpman, V.I. and Shagalov, A.G. (2000) Stability of Solitons Described by Nonlinear Schro¨dinger-Type Equations with Higher-Order Dispersion. Physica D: Nonlinear Phenom- ena, 144, 194-210. [Google Scholar] [CrossRef
[4] Dysthe, K.B. (1979) Note on a Modification to the Nonlinear Schrodinger Equation for Ap- plication to Deep Water Waves. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 369, 105-114. [Google Scholar] [CrossRef
[5] Kudryashov, N.A. (2023) Optical Solitons of the Schrodinger-Hirota Equation of the Fourth Order. Optik, 274, Article 170587. [Google Scholar] [CrossRef
[6] Ben-artzi, M., Koch, H. and Saut, J. (2000) Dispersion Estimates for Fourth Order Schro¨dinger Equations. Comptes Rendus de l’Acad´emie des Sciences—Series I—Mathematics, 330, 87-92. [Google Scholar] [CrossRef
[7] Erdogˇan, M.B. and Green, W.R. (2022) The L-Continuity of Wave Operators for Higher Order Schrodinger Operators. Advances in Mathematics, 404, Article 108450. [Google Scholar] [CrossRef
[8] Feng, H., Soffer, A., Wu, Z. and Yao, X. (2020) Decay Estimates for Higher-Order Elliptic Operators. Transactions of the American Mathematical Society, 373, 2805-2859. [Google Scholar] [CrossRef
[9] Frank, R.L., Laptev, A. and Weidl, T. (2022) Schrodinger Operators: Eigenvalues and Lieb- Thirring Inequalities. Cambridge University Press.[CrossRef
[10] Galtbayar, A. and Yajima, K. (2024) The Lp-Boundedness of Wave Operators for Fourth Order Schrodinger Operators on R4. Journal of Spectral Theory, 14, 271-354. [Google Scholar] [CrossRef
[11] Cuenin, J. (2020) Embedded Eigenvalues of Generalized Schrodinger Operators. Journal of Spectral Theory, 10, 415-437. [Google Scholar] [CrossRef
[12] Ishida, A., Lorinczi, J. and Sasaki, I. (2022) Absence of Embedded Eigenvalues for Non-Local Schrodinger Operators. Journal of Evolution Equations, 22, Article No. 82. [Google Scholar] [CrossRef
[13] Jensen, A. and Kato, T. (1979) Spectral Properties of Schrodinger Operators and Time-Decay of the Wave Functions. Duke Mathematical Journal, 46, 583-611. [Google Scholar] [CrossRef
[14] Goldberg, M. and Visan, M. (2006) A Counterexample to Dispersive Estimates for Schrodinger Operators in Higher Dimensions. Communications in Mathematical Physics, 266, 211-238. [Google Scholar] [CrossRef
[15] Rodnianski, I. and Tao, T. (2014) Effective Limiting Absorption Principles, and Applications. Communications in Mathematical Physics, 333, 1-95. [Google Scholar] [CrossRef
[16] Jensen, A. and Nenciu, G. (2001) A Unified Approach to Resolvent Expansions at Thresholds. Reviews in Mathematical Physics, 13, 717-754. [Google Scholar] [CrossRef
[17] Agmon, S. (1975) Spectral Properties of Schrodinger Operators and Scattering Theory. Annali della Scuola Normale Superiore di Pisa, 2, 151-218.