|
[1]
|
Karpman, V.I. (1994) Solitons of the Fourth Order Nonlinear Schro¨dinger Equation. Physics Letters A, 193, 355-358. [Google Scholar] [CrossRef]
|
|
[2]
|
Karpman, V.I. (1996) Stabilization of Soliton Instabilities by Higher Order Dispersion: Kdv-
Type Equations. Physics Letters A, 210, 77-84.[CrossRef]
|
|
[3]
|
Karpman, V.I. and Shagalov, A.G. (2000) Stability of Solitons Described by Nonlinear Schro¨dinger-Type Equations with Higher-Order Dispersion. Physica D: Nonlinear Phenom-
ena, 144, 194-210. [Google Scholar] [CrossRef]
|
|
[4]
|
Dysthe, K.B. (1979) Note on a Modification to the Nonlinear Schrodinger Equation for Ap- plication to Deep Water Waves. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 369, 105-114. [Google Scholar] [CrossRef]
|
|
[5]
|
Kudryashov, N.A. (2023) Optical Solitons of the Schrodinger-Hirota Equation of the Fourth Order. Optik, 274, Article 170587. [Google Scholar] [CrossRef]
|
|
[6]
|
Ben-artzi, M., Koch, H. and Saut, J. (2000) Dispersion Estimates for Fourth Order Schro¨dinger Equations. Comptes Rendus de l’Acad´emie des Sciences—Series I—Mathematics, 330, 87-92. [Google Scholar] [CrossRef]
|
|
[7]
|
Erdogˇan, M.B. and Green, W.R. (2022) The L-Continuity of Wave Operators for Higher Order Schrodinger Operators. Advances in Mathematics, 404, Article 108450. [Google Scholar] [CrossRef]
|
|
[8]
|
Feng, H., Soffer, A., Wu, Z. and Yao, X. (2020) Decay Estimates for Higher-Order Elliptic Operators. Transactions of the American Mathematical Society, 373, 2805-2859. [Google Scholar] [CrossRef]
|
|
[9]
|
Frank, R.L., Laptev, A. and Weidl, T. (2022) Schrodinger Operators: Eigenvalues and Lieb-
Thirring Inequalities. Cambridge University Press.[CrossRef]
|
|
[10]
|
Galtbayar, A. and Yajima, K. (2024) The Lp-Boundedness of Wave Operators for Fourth Order Schrodinger Operators on R4. Journal of Spectral Theory, 14, 271-354. [Google Scholar] [CrossRef]
|
|
[11]
|
Cuenin, J. (2020) Embedded Eigenvalues of Generalized Schrodinger Operators. Journal of Spectral Theory, 10, 415-437. [Google Scholar] [CrossRef]
|
|
[12]
|
Ishida, A., Lorinczi, J. and Sasaki, I. (2022) Absence of Embedded Eigenvalues for Non-Local Schrodinger Operators. Journal of Evolution Equations, 22, Article No. 82. [Google Scholar] [CrossRef]
|
|
[13]
|
Jensen, A. and Kato, T. (1979) Spectral Properties of Schrodinger Operators and Time-Decay of the Wave Functions. Duke Mathematical Journal, 46, 583-611. [Google Scholar] [CrossRef]
|
|
[14]
|
Goldberg, M. and Visan, M. (2006) A Counterexample to Dispersive Estimates for Schrodinger Operators in Higher Dimensions. Communications in Mathematical Physics, 266, 211-238. [Google Scholar] [CrossRef]
|
|
[15]
|
Rodnianski, I. and Tao, T. (2014) Effective Limiting Absorption Principles, and Applications.
Communications in Mathematical Physics, 333, 1-95. [Google Scholar] [CrossRef]
|
|
[16]
|
Jensen, A. and Nenciu, G. (2001) A Unified Approach to Resolvent Expansions at Thresholds.
Reviews in Mathematical Physics, 13, 717-754. [Google Scholar] [CrossRef]
|
|
[17]
|
Agmon, S. (1975) Spectral Properties of Schrodinger Operators and Scattering Theory. Annali
della Scuola Normale Superiore di Pisa, 2, 151-218.
|