|
[1]
|
Kumar, P., Luo, P., Gaspar, F.J. and Oosterlee, C.W. (2018) A Multigrid Multilevel Monte Carlo Method for Transport in the Darcy-Stokes System. Journal of Computational Physics, 371, 382-408. [Google Scholar] [CrossRef]
|
|
[2]
|
van Beynen, P.E., Niedzielski, M.A., Bialkowska-Jelinska, E., Alsharif, K. and Matusick, J.(2012) Comparative Study of Specific Groundwater Vulnerability of a Karst Aquifer in Central Florida. Applied Geography, 32, 868-877. [Google Scholar] [CrossRef]
|
|
[3]
|
Vassilev, D. and Yotov, I. (2009) Coupling Stokes-Darcy Flow with Transport. SIAM Journal on Scientific Computing, 31, 3661-3684. [Google Scholar] [CrossRef]
|
|
[4]
|
Liang, H., Shi, B.C., Guo, Z.L. and Chai, Z.H. (2014) Phase-Field-Based Multiple-Relaxation- Time Lattice Boltzmann Model for Incompressible Multiphase Flows. Physical Review E, 89,Article 053320. [Google Scholar] [CrossRef]
|
|
[5]
|
Liang, H., Shi, B.C. and Chai, Z.H. (2016) Lattice Boltzmann Modeling of Three-Phase In- compressible Flows. Physical Review E, 93, Article 013308. [Google Scholar] [CrossRef]
|
|
[6]
|
Lee, H., Lowengrub, J.S. and Goodman, J. (2002) Modeling Pinchoff and Reconnection in a Hele-Shaw Cell. I. The Models and Their Calibration. Physics of Fluids, 14, 492-513. [Google Scholar] [CrossRef]
|
|
[7]
|
Wise, S.M. (2010) Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations. Journal of Scientific Computing, 44, 38-68. [Google Scholar] [CrossRef]
|
|
[8]
|
Guo, R., Xia, Y. and Xu, Y. (2014) An Efficient Fully-Discrete Local Discontinuous Galerkin Method for the Cahn-Hilliard-Hele-Shaw System. Journal of Computational Physics, 264, 23-40. [Google Scholar] [CrossRef]
|
|
[9]
|
Chen, W., Liu, Y., Wang, C. and Wise, S.M. (2015) Convergence Analysis of a Fully Discrete Finite Difference Scheme for the Cahn-Hilliard-Hele-Shaw Equation. Mathematics of Compu- tation, 85, 2231-2257. [Google Scholar] [CrossRef]
|
|
[10]
|
Gao, Y., Li, R., Mei, L. and Lin, Y. (2020) A Second-Order Decoupled Energy Stable Numerical Scheme for Cahn-Hilliard-Hele-Shaw System. Applied Numerical Mathematics, 157, 338-355. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhao, M., Li, X., Ying, W., Belmonte, A., Lowengrub, J. and Li, S. (2018) Computation of a Shrinking Interface in a Hele-Shaw Cell. SIAM Journal on Scientific Computing, 40,B1206-B1228. [Google Scholar] [CrossRef]
|
|
[12]
|
Morrow, L.C., Moroney, T.J. and McCue, S.W. (2019) Numerical Investigation of Controlling Interfacial Instabilities in Non-Standard Hele-Shaw Configurations. Journal of Fluid Mechan- ics, 877, 1063-1097. [Google Scholar] [CrossRef]
|
|
[13]
|
Han, D. and Wang, X. (2015) Decoupled Energy-Law Preserving Numerical Schemes for the Cahn-Hilliard-Darcy System. Numerical Methods for Partial Differential Equations, 32, 936- 954. [Google Scholar] [CrossRef]
|
|
[14]
|
Han, D. and Wang, X. (2018) A Second Order in Time, Decoupled, Unconditionally Stable Numerical Scheme for the Cahn-Hilliard-Darcy System. Journal of Scientific Computing, 77, 1210-1233. [Google Scholar] [CrossRef]
|
|
[15]
|
Feng, X. and Wise, S. (2012) Analysis of a Darcy-Cahn-Hilliard Diffuse Interface Model for the Hele-Shaw Flow and Its Fully Discrete Finite Element Approximation. SIAM Journal on Numerical Analysis, 50, 1320-1343. [Google Scholar] [CrossRef]
|
|
[16]
|
Jiang, J., Wu, H. and Zheng, S. (2015) Well-Posedness and Long-Time Behavior of a Non- Autonomous Cahn-Hilliard-Darcy System with Mass Source Modeling Tumor Growth. Journal of Differential Equations, 259, 3032-3077. [Google Scholar] [CrossRef]
|
|
[17]
|
Frigeri, S., Lam, K.F., Rocca, E. and Schimperna, G. (2018) On a Multi-Species Cahn-Hilliard- Darcy Tumor Growth Model with Singular Potentials. Communications in Mathematical Sci- ences, 16, 821-856. [Google Scholar] [CrossRef]
|
|
[18]
|
Garcke, H., Lam, K.F., Nürnberg, R. and Sitka, E. (2018) A Multiphase Cahn-Hilliard-Darcy Model for Tumour Growth with Necrosis. Mathematical Models and Methods in Applied Sci- ences, 28, 525-577. [Google Scholar] [CrossRef]
|
|
[19]
|
Wu, Y., Mei, L., Qiu, M. and Chu, Y. (2019) A Stabilized Finite Volume Element Method for Stationary Stokes-Darcy Equations Using the Lowest Order. International Journal of Compu- tational Methods, 17, Article 1950053. [Google Scholar] [CrossRef]
|
|
[20]
|
Han, D. and Wang, X. (2015) A Second Order in Time, Uniquely Solvable, Unconditionally Stable Numerical Scheme for Cahn-Hilliard-Navier-Stokes Equation. Journal of Computational Physics, 290, 139-156. [Google Scholar] [CrossRef]
|
|
[21]
|
Shen, J., Xu, J. and Yang, J. (2019) A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows. SIAM Review, 61, 474-506. [Google Scholar] [CrossRef]
|
|
[22]
|
Gao, Y., He, X. and Nie, Y. (2021) Second-Order, Fully Decoupled, Linearized, and Uncondi- tionally Stable Scalar Auxiliary Variable Schemes for Cahn-Hilliard-Darcy System. Numerical Methods for Partial Differential Equations, 38, 1658-1683. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen, R., Li, Y., Pan, K. and Yang, X. (2022) Efficient Second-Order, Linear, Decoupled and Unconditionally Energy Stable Schemes of the Cahn-Hilliard-Darcy Equations for the Hele- Shaw Flow. Numerical Algorithms, 92, 2275-2306. [Google Scholar] [CrossRef]
|