两类Ricci二次闵可夫斯基积芬斯勒流形
Two Classes of Ricci Quadratic Minkowskian Product FinslerManifolds
DOI: 10.12677/PM.2026.162049, PDF,    国家自然科学基金支持
作者: 郑逢雨, 何 勇*, 陈静雅, 徐延雪:新疆师范大学数学科学学院,新疆乌鲁木齐
关键词: 芬斯勒流形闵可夫斯基积Ricci二次强 Ricci二次Finsler Manifold Minkowskian Product Ricci Quadratic Form Strongly Ricci Quadratic Form
摘要: 设(M1,F1)和(M2,F2)是两个芬斯勒流形,闵可夫斯基积芬斯勒流形(M,F)是赋予了芬斯勒度量F=√f(S,T)的乘积流形M= M1× M2,其中S= F12,T=F22,f是积函数.本文主要研究闵可夫斯基积芬斯勒流形的 Ricci 二次曲率,证明了闵可夫斯基积芬斯勒流形(M,F)是 Ricci二次流形当且仅当(M1,F1)和(M2,F2)都是 Ricci 二次流形;闵可夫斯基积芬斯勒流形(M,F)是强Ricci二次流形当且仅当(M1,F1)和(M2,F2)都是强 Ricci二次流形。
Abstract: Let (M1,F1) and (M2,F2) be two Finsler manifolds. The Minkowskian product Finsler manifold (M,F) is the product manifold M= M1× M2 endowed with the Finsler metric F=√f(S,T), where S= F12,T=F22, and f denotes a product function. This paper mainly investigates the Ricci quadratic curvature of Minkowskian product Finsler manifolds, and proves the following results: The Minkowskian product Finsler man- ifold (M,F) is a Ricci quadratic manifold if and only if both (M1,F1) and (M2,F2) are Ricci quadratic manifolds; The Minkowskian product Finsler manifold (M,F) is a strongly Ricci quadratic manifold if and only if both (M1,F1) and (M2,F2) are strongly Ricci quadratic manifolds.
文章引用:郑逢雨, 何勇, 陈静雅, 徐延雪. 两类Ricci二次闵可夫斯基积芬斯勒流形[J]. 理论数学, 2026, 16(2): 200-207. https://doi.org/10.12677/PM.2026.162049

参考文献

[1] Bacso, S. and Matsumoto, M. (1999) Finsler Spaces with the h-Curvature Tensor Dependent on Position Alone. Publicationes Mathematicae Debrecen, 55, 199-210.[CrossRef
[2] Li, B. and Shen, Z. (2009) On Randers Metrics of Quadratic Riemann Curvature. International Journal of Mathematics, 20, 369-376. [Google Scholar] [CrossRef
[3] Sevim, E.S., Shen, Z. and  Ulgen, S. (2023) On Strongly Ricci-Quadratic Finsler Metrics. The Journal of Geometric Analysis, 33, Article No. 326. [Google Scholar] [CrossRef
[4] Sadeghzadeh, N. (2018) On Finsler Metrics of Quadratic Curvature. Journal of Geometry and Physics, 132, 75-83. [Google Scholar] [CrossRef
[5] Mo, X. and Yu, Y. (2024) On Ricci-Quadratic Sprays (or Finsler) Spaces. Mediterranean Journal of Mathematics, 21, Article No. 211. [Google Scholar] [CrossRef
[6] Gabrani, M., Sevim, E.S. and  Ulgen, S. (2024) On a Class of Ricci Quadratic Finsler Metrics. Frontiers of Mathematics, 19, 851-864. [Google Scholar] [CrossRef
[7] Okada, T. (1982) Minkowskian Product of Finsler Spaces and Berwald Connection. Kyoto Journal of Mathematics, 22, 323-332. [Google Scholar] [CrossRef
[8] He, Y., Li, J., Bian, L. and Zhang, N. (2023) On Minkowskian Product of Finsler Manifolds. Differential Geometry and its Applications, 89, Article 102019. [Google Scholar] [CrossRef
[9] 田畅,何勇,李淑雯,张辉.具有标量旗曲率的闵可夫斯基积芬斯勒度量[J].新疆师范大学学报(自然科学版),2022,41(3): 55-63.
[10] 张娜,卢维娜,韩江慧,加依达尔·里扎别克.闵可夫斯基积芬斯勒度量的道格拉斯曲率和外尔曲率[J].新疆师范大学学报(自然科学版),2023,42(1):67-74.
[11] Bao, D., Chern, S.S. and Shen, Z.M. (2000) An Introduction to Riemann-Finsler Geometry. Springer Science.
[12] Shen, Z.M. (2001) Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers.
[13] 栗嘉慧.Finsler度量的Minkowskian积[D]:[硕士学位论文].乌鲁木齐:新疆师范大学,2022.
[14] Tian, C., He, Y., Lu, W. and Eryzabk, J. (2024) On Some Non-Riemannian Curvature of Minkowskian Product Finsler Metrics. Journal of Mathematical Analysis and Applications, 534, Article 128070.[CrossRef