神经系统表观遗传进展
Epigenetics Advances in the Nervous System
DOI: 10.12677/QRB.2015.21001, PDF, HTML, XML,    国家自然科学基金支持
作者: 王 卓*, 戴甲培*:中南民族大学武汉神经科学和神经工程研究所,中南民族大学生命科学学院;覃 瑞, 余光辉*:中南民族大学生命科学学院,南方少数民族地区资源保护综合利用联合工程中心,武陵山区特色资源植物种质保护与利用湖北省重点实验室
关键词: 表观遗传神经系统神经系统功能与疾病跨代遗传Epigenetics Central Nervous System CNS Functions and Disorders Transgenerational Inherience
摘要: 神经表观遗传学是一门新兴的学科,主要研究中枢神经系统的表观遗传机制。最新研究发现,获得性行为、中枢神经系统功能紊乱、神经可塑性、神经毒性和药物成瘾以及神经系统疾病的发生等现象都涉及到相关的表观遗传机制。人类神经系统发育和功能也与表观遗传机制有关,并且表现出跨代遗传的表观遗传效应。本文综述了神经表观遗传学研究方面的进展和相应的机制。
Abstract: Neuroepigenetics is a new emerging field, mainly focusing on epigenetic mechanism study of the central nervous system (CNS). New discoveries show that the CNS-related behaviors, CNS disorders, neural plasticity, neurotoxicity, drug addiction and other neurological disorders are related to the underlying epigenetic mechanisms. Moreover, the development and the function of the human nervous system are also linked with epigenetic mechanisms, exhibiting transgenerational epigenetic effects. Advances in the study of epigenetic mechanisms in CNS are reviewed in this contribution.
文章引用:王卓, 覃瑞, 戴甲培, 余光辉. 神经系统表观遗传进展[J]. 千人·生物, 2015, 2(1): 1-9. http://dx.doi.org/10.12677/QRB.2015.21001

参考文献

[1] Wu, C. and Morris, J.R. (2001) Genes, genetics, and epigenetics: A correspondence. Science, 293, 1103-1105. http://dx.doi.org/10.1126/science.293.5532.1103 [Google Scholar] [CrossRef] [PubMed]
[2] Day, J.J. and Sweatt, J.D. (2010) DNA methylation and memory formation. Nature Neuroscience, 13, 1319-1323. http://dx.doi.org/10.1038/nn.2666 [Google Scholar] [CrossRef] [PubMed]
[3] Gaydos, L.J., Wang, W. and Strome, S. (2014) Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science, 345, 1515-1518. http://dx.doi.org/10.1126/science.1255023 [Google Scholar] [CrossRef] [PubMed]
[4] Sweatt, J.D. (2013) The emerging field of neuroepigenetics. Neuron, 80, 624-632. http://dx.doi.org/10.1016/j.neuron.2013.10.023 [Google Scholar] [CrossRef] [PubMed]
[5] Crick, F. (1984) Memory and molecular turnover. Nature, 312, 101. http://dx.doi.org/10.1038/312101a0 [Google Scholar] [CrossRef] [PubMed]
[6] Lisman, J.E. (1985) A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proceedings of the National Academy of Sciences of the United States of America, 82, 3055-3057. http://dx.doi.org/10.1073/pnas.82.9.3055 [Google Scholar] [CrossRef] [PubMed]
[7] Santos, K.F., Mazzola, T.N. and Carvalho, H.F. (2005) The prima donna of epigenetics: the regulation of gene expression by DNA methylation. Brazilian Journal of Medical and Biological Research, 38, 1531-1541. http://dx.doi.org/10.1590/S0100-879X2005001000010 [Google Scholar] [CrossRef
[8] Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6-21. http://dx.doi.org/10.1101/gad.947102 [Google Scholar] [CrossRef] [PubMed]
[9] Holliday, R. (2006) Epigenetics: A historical overview. Epigenetics, 1, 76-80. http://dx.doi.org/10.4161/epi.1.2.2762 [Google Scholar] [CrossRef] [PubMed]
[10] Guo, J.U., Su, Y., Zhong, C., Ming, G.L. and Song, H. (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423-434. http://dx.doi.org/10.1016/j.cell.2011.03.022 [Google Scholar] [CrossRef] [PubMed]
[11] Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074-1080. http://dx.doi.org/10.1126/science.1063127 [Google Scholar] [CrossRef] [PubMed]
[12] Borrelli, E., Nestler, E.J., Allis, C.D. and Sassone-Corsi, P. (2008) Decoding the epigenetic language of neuronal plasticity. Neuron, 60, 961-974. http://dx.doi.org/10.1016/j.neuron.2008.10.012 [Google Scholar] [CrossRef] [PubMed]
[13] Lee, J.S., Smith, E. and Shilatifard, A. (2010) The language of histone crosstalk. Cell, 142, 682-685. http://dx.doi.org/10.1016/j.cell.2010.08.011 [Google Scholar] [CrossRef] [PubMed]
[14] Wang, Z., Zang, C., Rosenfeld, J.A., Schones, D.E., Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Peng, W., Zhang, M.Q. and Zhao, K. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897-903. http://dx.doi.org/10.1038/ng.154 [Google Scholar] [CrossRef] [PubMed]
[15] Wood, M.A., Hawk, J.D. and Abel, T. (2006) Combinatorial chromatin modifications and memory storage: A code for memory? Learning & Memory, 13, 241-244. http://dx.doi.org/10.1101/lm.278206 [Google Scholar] [CrossRef] [PubMed]
[16] Sun, A.X., Crabtree, G.R. and Yoo, A.S. (2013) MicroRNAs: Regulators of neuronal fate. Current Opinion in Cell Biology, 25, 215-221. http://dx.doi.org/10.1016/j.ceb.2012.12.007 [Google Scholar] [CrossRef] [PubMed]
[17] Tardito, D., Mallei, A. and Popoli, M. (2013) Lost in translation. New unexplored avenues for neuropsychopharmacology: Epigenetics and microRNAs. Expert Opinion on Investigational Drugs, 22, 217-233. http://dx.doi.org/10.1517/13543784.2013.749237 [Google Scholar] [CrossRef] [PubMed]
[18] Ronan, J.L., Wu, W. and Crabtree, G.R. (2013) From neural development to cognition: Unexpected roles for chromatin. Nature Reviews Genetics, 14, 347-359. http://dx.doi.org/10.1038/nrg3413 [Google Scholar] [CrossRef] [PubMed]
[19] Ballas, N. and Mandel, G. (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Current Opinion in Neurobiology, 15, 500-506. http://dx.doi.org/10.1016/j.conb.2005.08.015 [Google Scholar] [CrossRef] [PubMed]
[20] Muotri, A.R. and Gage, F.H. (2006) Generation of neuronal variability and complexity. Nature, 441, 1087-1093. http://dx.doi.org/10.1038/nature04959 [Google Scholar] [CrossRef] [PubMed]
[21] Bailey, C.H., Kandel, E.R. and Si, K. (2004) The persistence of long-term memory: A molecular approach to self- sustaining changes in learning-induced synaptic growth. Neuron, 44, 49-57. http://dx.doi.org/10.1016/j.neuron.2004.09.017 [Google Scholar] [CrossRef] [PubMed]
[22] Si, K., Lindquist, S. and Kandel, E. (2004) A possible epigenetic mechanism for the persistence of memory. Cold Spring Harbor Symposia on Quantitative Biology, 69, 497-498. http://dx.doi.org/10.1101/sqb.2004.69.497 [Google Scholar] [CrossRef] [PubMed]
[23] Sultan, F.A. and Day, J.J. (2011) Epigenetic mechanisms in memory and synaptic function. Epigenomics, 3, 157-181. http://dx.doi.org/10.2217/epi.11.6 [Google Scholar] [CrossRef] [PubMed]
[24] Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D., Silva, A.J. and Fan, G.P. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423- 430. http://dx.doi.org/10.1038/nn.2514 [Google Scholar] [CrossRef] [PubMed]
[25] Lubin, F.D., Roth, T.L. and Sweatt, J.D. (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 10576-10586. http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008 [Google Scholar] [CrossRef
[26] Miller, C.A. and Sweatt, J.D. (2007) Covalent modification of DNA regulates memory formation. Neuron, 53, 857-869. http://dx.doi.org/10.1016/j.neuron.2007.02.022 [Google Scholar] [CrossRef] [PubMed]
[27] Monsey, M.S., Ota, K.T., Akingbade, I.F., Hong, E.S. and Schafe, G.E. (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE, 6, e19958. http://dx.doi.org/10.1371/journal.pone.0019958 [Google Scholar] [CrossRef] [PubMed]
[28] Guo, J.U., Ma, D.K., Mo, H., Ball, M.P., Jang, M.H., Bonaguidi, M.A., Balazer, J.A., Eaves, H.L., Xie, B., Ford, E., Zhang, K., Ming, G.L., Gao, Y. and Song, H. (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 14, 1345-1351. http://dx.doi.org/10.1038/nn.2900 [Google Scholar] [CrossRef] [PubMed]
[29] Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C. and Zhang, Y. (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466, 1129-1133. http://dx.doi.org/10.1038/nature09303 [Google Scholar] [CrossRef] [PubMed]
[30] Kriaucionis, S. and Heintz, N. (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324, 929-930. http://dx.doi.org/10.1126/science.1169786 [Google Scholar] [CrossRef] [PubMed]
[31] Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L. and Rao, A. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324, 930-935. http://dx.doi.org/10.1126/science.1170116 [Google Scholar] [CrossRef] [PubMed]
[32] Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. and Zhang, Y. (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333, 1300-1303. http://dx.doi.org/10.1126/science.1210597 [Google Scholar] [CrossRef] [PubMed]
[33] Kaas, G.A., Zhong, C., Eason, D.E., Ross, D.L., Vachhani, R.V., Ming, G.L., King, J.R., Song, H. and Sweatt, J.D. (2013) TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 1086-1093. http://dx.doi.org/10.1016/j.neuron.2013.08.032 [Google Scholar] [CrossRef] [PubMed]
[34] Rudenko, A., Dawlaty, M.M., Seo, J., Cheng, A.W., Meng, J., Le, T., Faull, K.F., Jaenisch, R. and Tsai, L.H. (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 1109-1122. http://dx.doi.org/10.1016/j.neuron.2013.08.003 [Google Scholar] [CrossRef] [PubMed]
[35] Petronis, A. (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 465, 721-727. http://dx.doi.org/10.1038/nature09230 [Google Scholar] [CrossRef] [PubMed]
[36] 李婷, 李华芳, 禹顺英 (2012) Reelin在精神疾病中的研究进展. 精神医学杂志, 1, 75-77.
[37] Ruzicka, W.B., Zhubi, A., Veldic, M., Grayson, D.R., Costa, E. and Guidotti, A. (2007) Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Molecular Psychiatry, 12, 385-397. http://dx.doi.org/10.1038/sj.mp.4001954 [Google Scholar] [CrossRef] [PubMed]
[38] Costa, E., Grayson, D.R. and Guidotti, A. (2003) Epigenetic downregulation of GABAergic function in schizophrenia: Potential for pharmacological intervention? Molecular Interventions, 3, 220-229. http://dx.doi.org/10.1124/mi.3.4.220 [Google Scholar] [CrossRef] [PubMed]
[39] Tsankova, N., Renthal, W., Kumar, A. and Nestler, E.J. (2007) Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8, 355-367. http://dx.doi.org/10.1038/nrn2132 [Google Scholar] [CrossRef] [PubMed]
[40] Oliveira, A.M., Hemstedt, T.J. and Bading, H. (2012) Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15, 1111-1113. http://dx.doi.org/10.1038/nn.3151 [Google Scholar] [CrossRef] [PubMed]
[41] Weaver, I.C., Cervoni, N., Champagne, F.A., D’Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M. and Meaney, M.J. (2004) Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847-854. http://dx.doi.org/10.1038/nn1276 [Google Scholar] [CrossRef] [PubMed]
[42] Reichardt, H.M. (2000) Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Molecular and Cellular Biology, 20, 9009-9017. http://dx.doi.org/10.1128/MCB.20.23.9009-9017.2000 [Google Scholar] [CrossRef
[43] Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. and Meaney, M.J. (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659-1662. http://dx.doi.org/10.1126/science.277.5332.1659 [Google Scholar] [CrossRef] [PubMed]
[44] McGowan, P.O., Sasaki, A., D’Alessio, A.C., Dymov, S., Labonte, B., Szyf, M., Turecki, G. and Meaney, M.J. (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342-348. http://dx.doi.org/10.1038/nn.2270 [Google Scholar] [CrossRef] [PubMed]
[45] Bohacek, J., Gapp, K., Saab, B.J. and Mansuy, I.M. (2013) Transgenerational epigenetic effects on brain functions. Biological Psychiatry, 73, 313-320. http://dx.doi.org/10.1016/j.biopsych.2012.08.019 [Google Scholar] [CrossRef] [PubMed]
[46] Kaminen-Ahola, N.J., Ahola, A.I. and Whitelaw, E. (2011) Epigenetic inheritance: Both mitotic and meiotic. Niculescu/Nutrition in Epigenetics, 1, 87-103. http://dx.doi.org/10.1002/9780470959824.ch5 [Google Scholar] [CrossRef
[47] Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J., Huang, Y., Dwork, A.J., Schultz, M.D., Yu, M., Tonti-Filippini, J., Heyn, H., Hu, S., Wu, J.C., Rao, A., Esteller, M., He, C., Haghighi, F.G., Sejnowski, T.J., Behrens, M.M. and Ecker, J.R. (2013) Global epigenomic reconfiguration during mammalian brain development. Science, 341, Article ID: 1237905. http://dx.doi.org/10.1126/science.1237905 [Google Scholar] [CrossRef] [PubMed]