一类分数阶微分方程解的性质探讨
Exploration on the Nature of Solutions for a Differential Equation of Fractional Order
DOI: 10.12677/PM.2016.61009, PDF, HTML, XML,    科研立项经费支持
作者: 林诗游*:海南师范大学数学与统计学院,海南 海口;任 洁:黎安初级中学,海南 陵水
关键词: 分数阶微分方程Caputo微分Schauder不动点定理压缩映象原理Differential Equation of Fractional Order Caputo Derivative Schauder Fixed Point Theorem Contraction Mapping Principle
摘要: 本文主要证明了一类分数阶非线性微分方程解的存在性和唯一性。文中用到的微分算子是Caputo分数阶微分算子。因这类方程的可解性是与一类Volterra型的积分方程的可解性等价,所以我们主要研究了与之等价的积分方程解的存在性和唯一性。我们通过Schauder不动点定理证明了积分方程解的存在性,用压缩映象原理证明了解的唯一性。
Abstract: We prove existence and uniqueness of the solution of a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative. For the solvability of the equation is equivalent to a class of Volterra integral equation, we study the existence and uniqueness of the integral equation. We prove the existence of the solution of integral equation by Schau- der fixed point theorem and the uniqueness of the solution by contraction mapping principle.
文章引用:林诗游, 任洁. 一类分数阶微分方程解的性质探讨[J]. 理论数学, 2016, 6(1): 56-64. http://dx.doi.org/10.12677/PM.2016.61009

1. 背景介绍

尽管分数阶微积分的概念几乎是与整数阶微积分同时出现的,但在过去很长时间内,由于缺乏实际应用背景的促进而发展缓慢。直至近年,由于在物理,化学,生物等领域的广泛应用(参看[1] -[4] ),分数阶微分方程已成为数学领域中值得深入研究的重要方程之一。许多学者(参看 [5] - [8] )都研究过分数阶微分方程的性质,并取得了可观的收获。例如,Delbosco和Rodino [7] 以及El-Sayed [8] 证明了下面这个非线性分数阶微分方程的解的存在性和唯一性定理:

这里的是黎曼–刘维尔分数阶微分。

Diethelm和Ford [6] 深入研究过下面的分数阶微分方程:

同样的,这里的表示黎曼–刘维尔分数阶微分。

Kosmatov [9] 进一步证明了

这里是指Caputo分数阶微分算子(参看 [10] ),这也是本文所用到的微分算子。

本文主要讨论的是一个分数阶非线性微分方程解的存在性和唯一性,研究方法主要是首先证明这个方程的可解性是与一个Volterra型的积分方程的可解性等价。文中用到的主要定理和Caputo微分算子的运算规则将在第2部分给出。第3部分和第4部分是关于方程的解的存在性和唯一性。

2. 预备知识和记号

首先给出本文用到的一个主要定理:

定理2.1. (Schauder不动点定理)设X是赋范线性空间,是非空的有界闭凸集。映射是连续的紧映射,那么中有一个不动点。

设函数。如果,这里,那么阶的Caputo分数阶微分定义为

(2.1)

的逆算子定义为

(2.2)

本文的目的是考察非线性微分方程

(2.3)

其中,此方程满足初值条件

(2.4)

我们的目标为研究分数阶的问题,因此的情况不在我们的考虑范围内。

在下面的定理中,我们给出了(2.1)和(2.2)这两个算子的关系和它们的一些性质。

定理2.2. 设,那么对于,成立

(a)

(b)

(c)

(d) 如果,满足,并且对于任一,存在满足,则下面的复合法则成立:

.

证明:(a) 令,将(2.1),(2.2)代入中得

,在上式中我们首先计算。由

因此

所以

不妨设。则,即,结论得证。(b),(c),(d)可类似证明,过程略。

分数阶微分的降阶可以通过以下定理实现,这也是下文将微分方程转化为积分方程时的主要技巧。

定理2.3. 设函数。那么对于所有的及任意成立

, (2.5)

. (2.6)

3. 解的存在性

这里我们主要为了在中找到初值问题(2.3)和(2.4)的解。

满足下面的条件:

(H1)是连续可微函数;

(H2) 存在非负函数,使得

(H3),存在的一个紧子区间,使得

以下引理表明初值问题(2.3)和(2.4)解的存在性与Volterra型积分方程(3.2)解的存在性是等价的。

引理3.1.满足(H1)和(H3)。函数是初值问题(2.3)和(2.4)的解的充要条件是

(3.1)

这里是下面这个积分方程的解

(3.2)

证明:(必要性)首先利用(2.5)式来对微分方程进行降阶。

作代换,在等式两边同时作用算子。由定理2.2(b)可得

由于,则上面的方程即为(3.2)。注意到,再应用积分公式即可得到(3.1)式。

(充分性)设是(3.2)的一个解。因为,函数

上连续,因此

也在上连续。故,因此。而对(3.1)两边同求阶导,再考虑(3.2)可得

注意到,上边两式同时作用算子,由定理(2.2)和(2.3)可得

因此我们证得了是(2.3)的解。又因为(3.2)式中的第二项在时趋于0,因此。故

综上所述,满足(2.3)和(2.4),充分性得证。

定理3.1. 设(H1),(H2),(H3)成立,如果下面两式成立:

那么积分方程(3.2)在中有解。

证明:在带有上确界范数的赋范线性空间中,我们定义映射

容易验证有定义并且

定义,其中。则中有界闭凸集。

对于,我们有

因此,即。另外容易验证映射是连续的紧映射。

根据定理2.1,中有一个不动点,此即积分方程(3.2)的解,证毕。

注:定理3.1中,要求满足不等式,即要求关于的增长不高于线性,这样满足解的存在性的方程就被限制在了一个很小的范围内。通过以下的定理我们将会看到,当关于满足任意的多项式估计时,解的存在性仍然成立。

(H4) 存在非负函数,使得

定理3.2. 设(H1),(H3),(H4)成立,定义

如果成立,并且,那么积分方程(3.2)在中有解。

证明:在带有上确界范数的赋范线性空间中,我们定义映射

容易验证有定义并且

定义,这里待定。对于

由幂平均不等式,也即

类似定理3.1的证明,需要求得合适的,使得成立。

考查函数,令,则,由于,因此在时取到最小值,只需要,方程就有正根,也即时存在,使得。因此时,,即

另外容易验证映射是连续的紧映射。根据定理2.1,中有一个不动点,此即积分方程(3.2)的解,证毕。

注:定理3.2成功地把定理3.1的结论推广到了关于满足任意多次的多项式估计的情形。但是定理3.2中对于的限制比定理3.1严格,并且随着多项式次数的提高,这个限制条件就越严格。因此在实际应用中,要根据具体情况选择这两个定理。

4. 解的唯一性

首先提出假设

(H5) 对于任意的,存在非负函数,使得

定理4.1. 如果(H1),(H3),(H5)成立,并且有

那么积分方程(3.2)有唯一解。

证明:在Banach空间中,我们定义

其中半径

定义映射

容易验证有定义并且

如果,那么有

因此上的映射。

,那么

由于,因此是一个压缩映射。根据压缩映像原理,有唯一的不动点,此即积分方程(3.2)的解。

注:定理4.1在证明唯一性的时候用到了压缩映像原理,事实上同时能够得到解的存在性,因此原方程在满足条件(H5)时,解的存在性仍然成立。

致谢

感谢编辑和审稿专家对本文所付出的劳动,本文受到海南省自然科学基金(项目名称:Gronwall不等式的推广及其在微分方程中的应用;项目编号:20151011)的资助,在此一并表示感谢。

参考文献

[1] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.
[2] Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego.
[3] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach. Gordon and Breach Science Publishers, Yverdon.
[4] West, B.J., Bologna, M. and Grigolini, P. (2003) Physics of Fractal Operators. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-21746-8
[5] Daftardar-Gejji, V. and Babakhani, A. (2004) Analysis of a System of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 293, 511-522.
http://dx.doi.org/10.1016/j.jmaa.2004.01.013
[6] Diethelm, K. and Ford, N.J. (2002) Analysis of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 265, 229-248.
http://dx.doi.org/10.1006/jmaa.2000.7194
[7] Delbosco, D. and Rodino, L. (1996) Existence and Uniqueness for a Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 204, 609-625.
http://dx.doi.org/10.1006/jmaa.1996.0456
[8] El-Sayed, A.M.A. (1988) Fractional Differential Equations. Kyungpook Math. J, 28, 22-28.
[9] Kosmatov, N. (2009) Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order. Nonlinear Analysis: Theory, Methods & Applications, 70, 2521-2529.
http://dx.doi.org/10.1016/j.na.2008.03.037
[10] Caputo, M. (1967) Linear Models of Dissipation Whose Q Is Almost Frequency Independent (Part II). Geophysical Journal International, 13, 529-539.
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x