1. 引言
疟疾是一种经按蚊叮咬而感染疟原虫所引起的虫媒传染病,据报道全世界每年有2.2亿人口受疟疾威胁,并且约有66万人死于疟疾 [1] 。青蒿素是我国学者在20世纪70年代初从中药青蒿(Artemisia annua L.)中分离得到的抗疟有效单体,是一种含有过氧基团的倍半萜内酯化合物(见图1),分子式为C15H22O5 [2] 。青蒿素是一种与过去抗疟药作用方式完全不同的新结构类型药物,是所有抗虐药中起效最快、疗效最好、毒副作用最低的化合物,特别是对脑型疟疾及多抗药性疟疾的疗效更为显著。目前,联合国卫生组织推荐以青蒿素为基础的联合疗法(ACTs)为最有效的治疗疟疾的方法 [3] - [5] 。
目前青蒿素类药物的生产主要是从青蒿植株中提取,而青蒿植株中青蒿素的含量较低(约占干重的0.01%~1%),使得青蒿素的市场供应能力受到了限制,导致青蒿素的价格昂贵,并且难以满足治疗病例对青蒿素的需求 [4] 。随着现代分子生物技术的发展,应用细胞工程、基因工程等技术手段提高青蒿素含量,以及采用合成生物学生产青蒿素逐渐成为人们研究的热点。因此,对青蒿素进行生物合成分子调控的研究,对提高青蒿素生物产量有着极为重要的作用。
2. 青蒿素的合成途径
为了提高青蒿中青蒿素的含量,国内外不断开展青蒿素生物合成学的研究,青蒿素的生物合成途径现在已十分清楚(见图2)。青蒿素生物合成途径属于类异戊二烯途径,有两条途径均可获得青蒿素的生物合成前体异戊烯基焦磷酸(isopentenyl phosphate, IPP):质体中的异戊二烯途径(MEP途径)和细胞质中的甲羟戊酸途径(MVA途径),然后IPP由法尼基焦磷酸合成酶(farnesyl diphosphate synthase, FPS)作用聚合生成法尼基焦磷酸(farnesyl diphosphate, FPP) [6] 。

Figure 1. The chemical structure of artemisinin
图1. 青蒿素的化学结构

Figure 2. Biosynthetic pathway of artemisinin
图2. 青蒿素的合成途径
青蒿素在青蒿分泌型腺毛的分泌细胞中合成,然后积累在分泌型腺毛的蜡质囊腔中 [7] [8] 。由FPP开始进入青蒿素合成特异的代谢途径,紫穗槐二烯合成酶(ADS)催化FPP生成紫穗槐二烯(amorpha-4,11- diene) [9] [10] ,ADS基因在青蒿腺毛中特异表达,是青蒿素生物合成的第一个关键酶基因 [9] [11] [12] 。随后,紫穗槐二烯经过一个细胞色素P450的水解酶紫穗槐二烯氧化酶(CYP71AV1)的作用水解为青蒿醇(artemisinic alcohol)并进一步氧化为青蒿醛(artemisinic aldehyde) [13] 。青蒿醛双键还原酶2 (DBR2) [14] 和醛脱氢酶1 (ALDH1) [15] 两步酶反应将青蒿醛先转化成二氢青蒿醛(dihydroartemisinic aldehyde),然后生成青蒿素的最直接前体二氢青蒿酸(dihydroartemisinic acid, DHAA)。与此同时,CYP71AV1和ALDH1也会催化青蒿醛生成青蒿酸(artemisinic acid) [13] [15] 。目前研究报道发现,从DHAA到青蒿素(artemisinin),以及青蒿酸到青蒿素B (arteannuin B)的转化是不需要酶的光氧化反应 [16] - [19] 。
3. 青蒿素生物合成途径的关键酶
在青蒿素合成途径探索的过程中,根据相关酶基因的克隆与功能鉴定,判定有几个关键酶的作用非常明显。目前,研究较多的关键酶有:HMG-CoA还原酶(HMGR),1-脱氧木酮糖- 5-磷酸还原异构酶(DXR),法呢基焦磷酸合酶(FPS),紫穗槐二烯合成酶(ADS),紫穗槐二烯氧化酶(CYP71AV1),细胞色素P450还原酶(CPR),青蒿醛双键还原酶(DBR2)和青蒿醛脱氢酶(ALDH1)。下面对这些参与青蒿素合成的关键酶作简单介绍。
3.1. 3-羟基-3-甲基戊二酰CoA还原酶(HMGR)
HMGR催化HMG-CoA形成甲羟戊酸(MVA),由于该酶促反应不可逆,所以HMGR被认为是MVA途径中的限速酶 [20] 。Chappell和Nable报道,在烟草悬浮细胞培养物中加入真菌诱导子会导致培养液中倍半萜类物质capsidiol的积累,同时也检测到HMGR瞬时峰值的出现 [21] 。Ram和Khan报道,HMGR酶活性将限制植物中青蒿素的合成和积累 [22] 。
3.2. 1-脱氧木酮糖- 5-磷酸还原异构酶(DXR)
在质体中,合成IPP的第一个关键步骤是通过DXR酶的作用生成MEP,据Graham等人构建的青蒿基因图谱,DXR基因与高水平青蒿素含量紧密相关 [3] [23] 。为了综合评价DXR基因在青蒿素生物合成的作用,使用CaMV 35S强启动子过表达DXR基因得到转基因植株,青蒿素含量比非转基因植株高1.21~2.35倍 [24] 。以上研究表明DXR基因对青蒿素生物合成具有调节作用。
3.3. 法呢基焦磷酸合酶(FPS)
FPS是一种1,4-异戊二烯基转移酶,它催化异戊烯基二磷酸(isopentenyl diphosphate, IPP)和二甲基烯丙基二磷酸(dimethylallyl diphosphate, DMAPP)通过缩合作用形成牛儿基焦磷酸(Geranylgeranyl pyrophosphate, GPP)以及催化GPP和IPP缩合形成FPP。1996年青蒿的FPS基因被首次克隆 [21] ,该基因编码343个氨基酸,推测编码蛋白的分子量为39.42 kD,其氨基酸序列与拟南芥、白羽扁豆和玉米的同源性分别为76%、84%和72%;与鼠、人类的同源性分别为46%和45%,在多聚异戊二烯转移酶中普遍存在的两个保守区域同时也存在于青蒿的FPS基因中。在大肠杆菌中表达后,在体外能检测到FPS活性 [25] 。2000年Chen等在青蒿中过量表达FPS基因,转化植株中青蒿素的含量比对照高2~3倍 [26] 。
3.4. 紫穗槐二烯合成酶(ADS)
ADS是青蒿素合成途径中另一个重要的酶,为倍半萜合酶,催化FPP形成青蒿素生物合成的倍半萜中间产物紫穗槐二烯 [12] 。1999年,Bouwmeester等首次从青蒿中分离到青蒿的ADS,随后,Mercke和Wallaart的研究小组先后从青蒿中克隆到ADS基因,并在大肠杆菌中表达。青蒿ADS基因的cDNA全长约2100 bp,编码区为1641 bp,推测编码546个氨基酸,编码蛋白的分子量为63.9 kD。Wallaart等将青蒿的ADS转入烟草(烟草不含内源倍半萜合酶),结果表明,在烟草中能检测到该酶的表达活性 [10] 。
3.5. 紫穗槐二烯氧化酶(CYP71AV1)和细胞色素P450还原酶(CPR)
CYP71AV1催化从紫穗槐二烯到青蒿酸的三步氧化反应。2006年,Teoh等人首先从青蒿中克隆该基因并进行功能验证。分析CYP71AV1基因在青蒿不同组织中的表达,结果表明它在腺毛中的表达量最高,其次在花蕾中有中等程度的表达,在根里面不表达 [13] 。从植物基因组表达序列标签数据库中检索到P450植物基因组表达序列标签,可以得到两种菊科作物——向日葵和生菜。用BLAST分析P450基因片段,可以证明青蒿中的CYP71AV1与向日葵和生菜的相比在氨基酸水平有惊人的同源性(85%~88%),与其它菊科以外的植物家族的同源性低的多。表明CYP71AV1在菊科植物中是一种特异的P450氧化酶。因此,菊科植物中CYP71AV1为保守的倍半萜内酯合成酶中很好的研究对象。
CPR是CYP71AV1的氧化还原伴体。2006年,Ro等克隆到了CYP71AV1基因及其氧化还原伴体基因CPR,他们发现在只转化了CPR的酵母中没有检测到青蒿酸,但在CYP71AV1和CPR共表达的酵母中,控制半乳糖诱导的启动子,检测到的青蒿酸含量达(32 ± 13) mg/L,青蒿醇的含量不及青蒿酸的5%,且完全不生成青蒿醛。证明CYP71AV1与它的氧化还原伴侣CPR共表达时,能提高青蒿酸的产量 [27] 。
3.7. 青蒿醛双键还原酶(DBR2)
DBR2是2008年由Zhang等人克隆得到。DBR2基因长为1245 bp,编码414氨基酸的蛋白质,分子质量为45.6 kD。DBR2在腺毛的表达量最高,特异性地作用于青蒿醛。将DBR2和青蒿素合成途径中ADS、CYP71AV1、CPR四个关键酶基因转化酵母,在酵母中检测出了二氢青蒿酸 [14] 。
3.8. 醛脱氢酶基因(ALDH1)
2009年,Teoh等从青蒿中克隆得到了一个醛脱氢酶基因,命名为ALDH1 [15] 。该基因编码区全长为1497 bp,编码498氨基酸,分子量为53.8 kD。ALDH1在青蒿中的表达方式和青蒿素在植物中的分布很相似。ALDH1能作用于青蒿醛和二氢青蒿醛,生成相应的青蒿酸和二氢青蒿酸。
4. 青蒿素生物合成的基因调控
由于青蒿素在植物青蒿中的含量很低,为了保证青蒿素的稳定供应,科研人员利用包括传统遗传育种、调控环境因子、利用微生物合成青蒿素,以及通过代谢工程改造青蒿植株等方法提高青蒿素的产量。
4.1. 青蒿发根体系的建立对青蒿素生物合成的调控
1994年,Weathers等 [28] 和秦明波、叶和春等 [29] 几乎同时建立了青蒿的发根培养体系;随后1998年刘本叶等又进一步研究了Ri质粒转化青蒿的各种影响因素,最终确定了最佳的转化条件,并利用农杆菌介导的转化体系筛选出的高产发根系,研究不同理化因子对发根生长及青蒿素生物合成的调控 [30] 。陈大华等人将棉花的(+)-δ-杜松烯合酶(CAD)的cDNA插入到植物表达载体中,通过发根农杆菌15834介导转化青蒿,获得了转基因发根,青蒿素含量与对照发根相比有所提高,CAD基因的导入和表达可能相应地促进青蒿转基因发根自身的FPS的表达 [31] 。
4.2. 青蒿素生物合成途径相关基因对青蒿素生物合成的调控
随着植物基因工程的发展,转基因技术被广泛地用于作物改良。人们也尝试了用转基因的方法提高青蒿中青蒿素的含量。
1996年,Vergauwe等通过Agrobacterium感染青蒿叶片,建立了Ti质粒介导的青蒿转化体系 [32] ;随后他们又详细研究了各种参数如外植体苗龄、种类、根癌农杆菌菌株类型及二元载体类型等对于青蒿转化的影响,进一步优化了Ti质粒介导的青蒿转化体系 [33] 。1999年陈等人将青蒿FPS基因转化青蒿,得到转基因青蒿毛状根和转基因植株发根系中的青蒿素含量提高,达到3.01 mg/g(DW),与对照相比,青蒿素含量提高3~4倍 [34] 。转FPS的再生植株中,青蒿素含量最高可达10.08 mg/g(DW),与野生型相比,青蒿素含量提高2~3倍 [26] 。因此,外源基因的导入,对青蒿转基因材料中倍半萜类物质的生物合成具有明显的调控作用。
研究表明,使用CaMV 35S强启动子过表达长春花(Catharanthus roseus. L) HMGR基因得到的转基因青蒿,植株中青蒿素的含量比野生型青蒿中高22.5%~38.9% [35] [36] 。此外,通过酿酒酵母(S. cerevisia)合成青蒿素的前体青蒿酸的过程中,青蒿的HMGR基因也被证实发挥了重要作用,HMGR的三拷贝工程酵母明显比单拷贝工程酵母青蒿酸产量多 [37] 。
Chen等在在青蒿中导入外源棉花(Gossypium arboretum) FPS基因,和非转基因的对照组相比,青蒿素的含量提高到2~3倍 [26] 。Banyai和Han [38] [39] 在青蒿中过表达青蒿的FPS基因,青蒿素的含量为野生型的2~2.5倍,并且青蒿素的含量和FPS基因的表达量有密切的相关性(R2 = 0.78, P ≤ 0.01)。Ma等 [40] 通过过表达青蒿的ADS基因,得到转基因青蒿中青蒿素、青蒿酸、二氢青蒿酸的含量和对照组相比分别提高了82%、65%和59%。
为了提高青蒿素的含量,除了过量表达单个青蒿素生物合成途径的关键酶基因,也可以同时过表达两个或者更多的基因。Alam和Abdin在青蒿中过表达长春花的HMGR基因和青蒿的ADS基因,得到的转基因植株中,青蒿素含量最高的株系和野生型相比提高了7.65倍 [41] 。Wang等在青蒿中过表达HMGR和FPS基因,和对照组相比,转基因植株青蒿中青蒿素含量为对照组的2.8倍 [42] 。Tang等人过量表达CYP71AV1和CPR基因,得到的转基因青蒿中青蒿素含量最高约为对照的2.4倍 [43] 。Chen等将FPS、CYP71AV1和CPR基因同时构建在pCAMBIA2300载体上,并使用CaMV35启动子,和对照组相比,转基因青蒿的青蒿素含量提高了3.6倍 [44] 。Lu等通过过表达ADS、CYP71AV1和CPR基因使青蒿素的含量和对照组相比提高了2.4倍(15.1 mg/g DW) [45] 。
上述结果表明,过量表达单个或多个青蒿素代谢途径中的关键酶基因可以有效地增加青蒿素的合成。
4.3. 竞争支路的抑制对青蒿素生物合成的调控
在青蒿素合成途径中,FPP作为紫穗槐二烯的前体,同时也能被其他倍半萜烯合酶通过竞争支路合成倍半萜烯。在与青蒿素生物合成途径的竞争中,角鲨烯合酶(SQS)是催化甾醇生物合成途径的第一个关键酶 [46] 。Zhang等将青蒿素合成途径中SQS基因沉默,抑制萜类合成途径中甾醇的合成,将青蒿素含量提高了3.14倍 [47] 。β-石竹烯合酶(CPS)是将FPP转化成β-石竹烯的关键酶,也是青蒿素生物合成途径重要的竞争支路 [48] 。Chen等通过在青蒿中导入cDNA反义链(asCPS)来下调CPS基因。结果和对照组相比,所有转基因青蒿的β-石竹烯均明显下降40%~60%,而青蒿素含量在一些转基因株系中提高了54.9% [49] 。
上述结果表明,抑制萜类生物合成途径中影响青蒿素生物合成的竞争支路的生物合成,可以有效地增加青蒿素的合成。
4.4. 诱导子对青蒿素生物合成的调控
最近几年对于诱导子对青蒿素生物合成的调控研究较多,诱导子引起了植物代谢过程的一系列变化,最终使植物产生防卫反应,如关键酶基因的表达量的变化,次生代谢产物的变化以及植物体内活性氧的变化等。2007年,Waraporn等用壳聚糖诱导青蒿毛状根,使得毛状根中青蒿素的含量比野生型的高出6倍 [50] ;2009年Gao等人使用水杨酸诱导青蒿植株,青蒿素的含量比对照组高出54%,并且确定了水杨酸诱导青蒿植株的最优条件 [51] 。2010年,Wang等人利用甲基茉莉酸(MeJA)诱导青蒿植株,检测青蒿素、青蒿酸及二氢青蒿酸的含量分别提高了49%、80%、28% [52] 。Caretto等人用外源MeJA诱导青蒿悬浮细胞,在30分钟内产生响应,青蒿素量增加3倍 [53] 。
4.5. 转录因子对青蒿素生物合成的调控
通常植物的转录因子可以调节代谢途径中的一系列基因,过表达植物转录因子也就成为一种很有前景的调控植物次生代谢产物的方法 [54] 。茉莉酮酸酯转录响应因子ORCA3已被证实可以调节长春花中超过5种萜类吲哚生物碱生物合成途径相关的基因,过表达ORCA3基因可使长春花中一些萜类吲哚生物碱含量的增加 [55] - [57] 。
第一个在青蒿中克隆和验证的转录因子AaWRKY1可以同时结合到ADS和CYP71AV1启动子的W box上,从而激活青蒿素生物合成途径关键酶基因的表达 [58] 。Tang等通过过表达AaWRKY1使青蒿素含量提高了3.4倍,从而达到24.5 mg/g (DW) [59] 。
AaORA为青蒿中AP2/ERF家族中的腺毛特异的转录因子,也被证实可以上调青蒿素生物合成途径的多个基因。在青蒿中过表达AaORA可以使青蒿素合成途径关键基因ADS、CYP71AV1、DBR2和转录因子AaERF1的表达水平均显著升高,所得转基因植株中青蒿素含量比对照组最多提高了53% (11.9 mg/g DW)。AaERF1和AaERF2为AP2类茉莉酸应答的转录因子,正调控青蒿素的生物合成。在青蒿中过表达AaERF1或AaERF2,青蒿素和青蒿酸的含量相应增加;在青蒿中抑制AaERF1或者AaERF2,次生代谢产物的含量则降低 [60] 。
ADS基因和CYP71AV1基因作为青蒿素生物合成的关键基因,启动子含有E-box顺式元件,是bHLH转录因子的结合位点。Ji等人从青蒿腺毛cDNA文库中分离到AabHLH1,其表达受脱落酸和真菌诱导子壳聚糖的诱导。AabHLH1能结合E-box顺式元件,将其瞬时转化青蒿叶片能够调控青蒿素合成途径中的关键酶基因。表明AabHLH1能调控青蒿素的生物合成 [61] 。
在拟南芥的研究中发现,MYC2转录因子是JA信号通路的主要调节器 [62] 。在青蒿中,JA诱导青蒿素的生物合成,AaMYC2基因表达快速响应JA诱导。AaMYC2的表达激活CYP71AV1和DBR2的转录,导致青蒿素含量增加。与此相反,AaMYC2的RNAi转基因植株中AaMYC2的表达被抑制,青蒿素含量降低。同时,所述RNAi转基因青蒿对MeJA处理的灵敏度比野生型植物低。AaMYC2是青蒿素生物合成的正调节因子,对增加青蒿素的生产遗传工程具有很大的价值 [63] 。
青蒿素储存在青蒿的腺毛中,这些腺毛主要分布在青蒿叶、芽和萼片的表面 [64] [65] , 所以普遍认为在腺毛中特异表达的基因在青蒿素的生物合成中有重要的作用。克隆到的AaWRKY1、AaORA和AabHLH转录因子都能结合腺毛特异的启动子,如ADS和CYP71AV1基因的启动子 [58] [66] 。近来,DBR2的启动子也被证实具有腺毛特异性,一些ADS和CYP71AV1启动子上的顺式作用元件同样能在DBR2的启动子区域找到 [67] 。至于转录因子能否和DBR2的启动子结合,还需要进一步地验证。
总的说来,过表达青蒿素生物合成途径的关键酶基因,阻碍竞争合成途径的关键酶基因,以及过表达转录因子等都是有效提高青蒿中青蒿素含量的方法。
5. 总结与展望
青蒿素是目前最有效的治疗疟疾药物,作为广谱性天然药物它具有极大的应用和市场潜力。由于无法满足青蒿素的长期稳定和大量的供应,科学家们通过各种方式试图提高其产量。青蒿素的生物合成是提高青蒿素产量的一个重点研究方向。青蒿作为青蒿素唯一的商业来源,人们试图通过基因工程途径来提高青蒿中青蒿素的含量,也取得了一定的成果。
近年来,青蒿素生物合成代谢途径已被解析,青蒿素生物合成的限速步骤和关键酶也被阐明。通过导入过量表达的限速酶基因或者抑制青蒿素合成途径中的分支途径,以及通过基因启动子上的作用元件调控基因的表达可以有效地提高青蒿素的合成。因此,基因工程手段将成为青蒿素代谢调控的新途径。同时还应加强生物反应器培养设备的研制,使青蒿素生物合成路线能适应工业化生产,提高青蒿素生产的能力来增加青蒿素的供给,为实现工业化生产的应用打下基础。
致谢
国家高科技研究发展计划(863项目)“植物代谢生物反应器产品研发(2011AA100605)”项目。
*通讯作者。