|
[1]
|
Heisenberg, W. (1927) Uber den anschaulichen inhalt der quanten theoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198. http://dx.doi.org/10.1007/BF01397280
|
|
[2]
|
Heinig, H.P. and Smith, M. (1986) Extensions of the Heisenberg-Weyl Inequality. International Journal of Mathematics and Science, 9, 185-192. http://dx.doi.org/10.1155/S0161171286000212
|
|
[3]
|
Selig, K.K. (2002) Uncertainty Principles Revisited. Electronic Transactions on Numerical Analysis, 14, 145-177.
|
|
[4]
|
Folland, G.B. and Sitaram, A. (1997) The Uncertainty Principle: A Mathematical Survey. The Journal of Fourier Analysis and Applications, 3, 207-238. http://dx.doi.org/10.1007/BF02649110
|
|
[5]
|
Stankovic, L., Alieva, T. and Bastiaans, M.J. (2003) Time-Frequency Signal Analysis Based on the Windowed Fractional Fourier Transform. Signal Processing, 83, 2459-2468. http://dx.doi.org/10.1016/S0165-1684(03)00197-X
|
|
[6]
|
Cohen, L. (2000) The uncertainty principles of windowed wave functions. Optics Communications, 179, 221–229.
http://dx.doi.org/10.1016/S0030-4018(00)00454-5
|
|
[7]
|
Loughlin, P.J. and Cohen, L. (2004) The Uncertainty Principle: Global, Local, or Both? IEEE Transaction on Signal Processing, 52, 1218-1227. http://dx.doi.org/10.1109/TSP.2004.826160
|
|
[8]
|
Beckner, W. (1995) Pitt’s Inequality and the Uncertainty Principle. Proceedings of the American Mathematical Society, 123, 1897-1905. http://dx.doi.org/10.1090/s0002-9939-1995-1254832-9
|
|
[9]
|
Beckner, W. (1975) Inequalities in Fourier analysis. The Annals of Mathematics, 2nd Ser, 102, 159-182.
http://dx.doi.org/10.2307/1970980
|
|
[10]
|
Hirschman Jr., I.I. (1957) A Note on Entropy. American Journal of Mathematics, 79, 152-156.
http://dx.doi.org/10.2307/2372390
|
|
[11]
|
Majerník, V., Majerníková, E. and Shpyrko, S. (2003) Uncertainty Relations Expressed by Shannon-Like Entropies. CEJP, 3, 393-420. http://dx.doi.org/10.2478/bf02475852
|
|
[12]
|
Iwo, B.B. (1985) Entropic Uncertainty Relations in Quantum Mechanics. Quantum Probability and Applications II. In: Accardi, L. and von Waldenfels, W., Eds., Lecture Notes in Mathematics 1136, Springer, Berlin, 90.
|
|
[13]
|
Maassen, H. (1988) A Discrete Entropic Uncertainty Relation. Quantum Probability and Applications V. Springer- Verlag, New York, 263-266.
|
|
[14]
|
Maassen, H. and Uffink, J.B.M. (1983) Generalized Entropic Uncertainty Relations. Physical Review Letters, 60, 1103-1106. http://dx.doi.org/10.1103/PhysRevLett.60.1103
|
|
[15]
|
Amir, D., Cover, T.M. and Thomas, J.A. (2001) Information Theoretic Inequalities. IEEE Transactions on Information Theory, 37, 1501-1508.
|
|
[16]
|
Iwo, B.B. (2006) Formulation of the Uncertainty Rela-tions in Terms of the Rényi Entropies. Physical Review A, 74, Article ID: 052101.
|
|
[17]
|
Iwo, B.B. (2007) Rényi Entropy and the Uncertainty Relations. In, Adenier, G., Fuchs, C.A. and Khrennikov, A.Y., Eds., Foundations of Probability and Physics, American Institute of Physics, Melville, 52-62.
|
|
[18]
|
Gill, J. (2005) An Entropy Measure of Uncertainty in Vote Choice. Electoral Studies, 24, 371-392.
http://dx.doi.org/10.1016/j.electstud.2004.10.009
|
|
[19]
|
Rényi, A. (1960) Some Fundamental Questions of Information Theory. Selected Papers of Alfred Renyi, Vol 2, pp 526-552, Akademia Kiado, Budapest, 1976.
|
|
[20]
|
Rényi, A. (1960) On Measures of In-formation and Entropy. Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, Berkeley, 20 June-30 July 1960, 547-561.
|
|
[21]
|
Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-656.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
|
|
[22]
|
Wódkiewicz, K. (1984) Operational Approach to Phase-Space Measurements in Quantum Mechanics. Physical Review Letters, 52, 1064-1067. http://dx.doi.org/10.1103/PhysRevLett.52.1064
|
|
[23]
|
Mustard, D. (1991) Uncertainty Principle Invariant under Fractional Fourier Transform. Journal of the Australian Mathematical Society, 33, 180-191. http://dx.doi.org/10.1017/S0334270000006986
|
|
[24]
|
Ozaktas, H.M. and Aytur, O. (1995) Fractional Fourier Domains. Signal Processing, 46, 119-124.
http://dx.doi.org/10.1016/0165-1684(95)00076-P
|
|
[25]
|
Shinde, S. and Vikram, M.G. (2001) An Uncertainty Principle for Real Signals in the Fractional Fourier Transform Domain. IEEE Transaction on Signal Processing, 49, 2545-2548. http://dx.doi.org/10.1109/78.960402
|
|
[26]
|
Stern, A. (2007) Sampling of Compact Signals in Offset Linear Canonical Transform Domains. Signal, Image and Video Processing, 1, 359-367. http://dx.doi.org/10.1007/s11760-007-0029-0
|
|
[27]
|
Stern, A. (2008) Uncertainty Principles in Linear Canonical Transform Domains and Some of Their Implications in Optics. Journal of the Optical Society of America A, 25, 647-652. http://dx.doi.org/10.1364/JOSAA.25.000647
|
|
[28]
|
Aytur, O. and Ozaktas, H.M. (1995) Non-Orthogonal Domains in Phase Space of Quantum Optics and Their Relation to Fractional Fourier Transform. Optics Communi-cations, 120, 166-170.
http://dx.doi.org/10.1016/0030-4018(95)00452-E
|
|
[29]
|
Lohmann, A.W. (1994) Relationships between the Radon-Wigner and Fractional Fourier Transfoms. Journal of the Optical Society of America A, 11, 1398-1401. http://dx.doi.org/10.1364/JOSAA.11.001798
|
|
[30]
|
Sharma, K.K. and Joshi, S.D. (2008) Uncertainty Principle for Real Signals in the Linear Canonical Transform Domains. IEEE Transaction on Signal Processing, 56, 2677-2683. http://dx.doi.org/10.1109/TSP.2008.917384
|
|
[31]
|
Adams, M.D., Kossentini, F. and Ward, R.K. (2002) Generalized S Transform. IEEE Transaction on Signal Processing, 50, 2831-2842. http://dx.doi.org/10.1109/TSP.2002.804085
|
|
[32]
|
Schimmel, M. and Gallart, J. (2005) The Inverse S-Transform in Filters with Time-Frequency Localization. IEEE Transaction on Signal Processing, 53, 4417-4422. http://dx.doi.org/10.1109/TSP.2005.857065
|
|
[33]
|
Simon, C., Ventosa, S., Schimmel, M. and Heldring, A. (2007) The S-Transform and Its Inverses: Side Effects of Discretizing and Filtering. IEEE Transaction on Signal Processing, 55, 4928-4937.
http://dx.doi.org/10.1109/TSP.2007.897893
|
|
[34]
|
Chilukuri, M.V. and Dash, P.K. (2004) Multiresolution S-Transform-Based Fuzzy Recognition System for Power Quality Events. IEEE Transactions on Power Delivery, 19, 323-330. http://dx.doi.org/10.1109/TPWRD.2003.820180
|
|
[35]
|
Richard, C. (2005) Time-Frequency Analysis of Visual Evoked Potentials Using Chirplet Transform. IEE Electronics Letters, 41, 217-218. http://dx.doi.org/10.1049/el:20056712
|
|
[36]
|
Wim, S. (1995) The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions. SPIE Proceedings of Wavelet Applications in Signal and Image Processing III, 2569, 68-79. http://dx.doi.org/10.1117/12.217619
|
|
[37]
|
Emmanuel, J. (2003) Ridgelets: Estimating with Ridge Functions. Annals of Statistics, 31, 1561-1599.
http://dx.doi.org/10.1214/aos/1065705119
|
|
[38]
|
Donoho, D.L. (2000) Orthonormal Ridgelets and Linear Singularities. SIAM Journal on Mathematical Analysis, 31, 1062-1099. http://dx.doi.org/10.1137/S0036141098344403
|
|
[39]
|
Stockwell, R.G., Man-sinha, L. and Lowe, R.P. (1996) Localization of the Complex Spectrum: The S Transform. IEEE Transactions on Signal Processing, 44, 998-1001. http://dx.doi.org/10.1109/78.492555
|
|
[40]
|
Assous, S., Humeau, A., Tartas, M., Abraham, P. and L’Huillier, J. (2006) S-Transform Applied to Laser Doppler Flowmetry Reactive Hyperemia Signals. IEEE Transaction on Biomedical Engineering, 53, 1032-1037.
http://dx.doi.org/10.1109/TBME.2005.863843
|
|
[41]
|
Pinnegar, C.R. and Mansinha, L. (2003) The S-Transform with Windows of Arbitrary and Varying Shape. Geophysics, 68, 381-385. http://dx.doi.org/10.1190/1.1543223
|
|
[42]
|
Tao, R., Li, Y. and Wang, Y. (2009) Short-Time Fractional Fourier Transform and Its Applications. IEEE Transaction on Signal Processing, 58, 2568-2580. http://dx.doi.org/10.1109/TSP.2009.2028095
|
|
[43]
|
陶然, 邓兵, 王越. 分数阶Fourier 变换及其应用[M]. 北京: 北京清华大学出版社, 2009.
|
|
[44]
|
冉启文, 谭立英. 分数傅里叶光学导论[M]. 北京: 北京科学出版社, 2004.
|
|
[45]
|
张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 北京国防工业出版社, 1998.
|
|
[46]
|
Pei, S.C., Yeh, M.H. and Luo, T.L. (1999) Fractional Fourier Series Expansion for Finite Signals and Dual Extension to Discrete-Time Fractional Fourier Transform. IEEE Transaction on Signal Processing, 47, 2883-2888.
http://dx.doi.org/10.1109/78.790671
|
|
[47]
|
Cariolaro, G., Erseghe, T., Kraniauskas, P. and Laurenti, N. (1998) A Unified Framework for the Fractional Fourier Transform. IEEE Transaction on Signal Processing, 46, 3206-3219. http://dx.doi.org/10.1109/78.735297
|
|
[48]
|
Barshan, B., Kutay, M.A. and Ozaktas, H.M. (1997) Optimal Filters with Linear Ca-nonical Transformations. Optics Communications, 135, 32-36. http://dx.doi.org/10.1016/S0030-4018(96)00598-6
|
|
[49]
|
Ozaktas, H.M., Kutay, M.A. and Zalevsky, Z. (2000) The Fractional Fourier Transform with Applications in Optics and Signal Processing. John Wiley & Sons, New York.
|
|
[50]
|
Pei, S.C. and Ding, J.J. (2001) Two-Dimensional Affine Generalized Fractional Fourier Transform. IEEE Transaction on Signal Processing, 49, 878-897. http://dx.doi.org/10.1109/78.912931
|
|
[51]
|
Tao, R., Li, B. and Wang, Y. (2007) Spectral Analysis and Reconstruction for Periodic No Uniformly Sampled Signals in Fractional Fourier Domain. IEEE Transactions on Signal Processing, 55, 3541-3547.
http://dx.doi.org/10.1109/TSP.2007.893931
|
|
[52]
|
Tao, R., Deng, B., Zhang, W. and Wang, Y. (2008) Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain. IEEE Transactions on Signal Processing, 56, 158-171.
http://dx.doi.org/10.1109/TSP.2007.901666
|
|
[53]
|
Xu, G., Wang, X. and Xu, X. (2009) The Logarithmic, Heisenberg’s and Windowed Uncertainty Principles in Fractional Fourier Transform Domains. Signal Processing, 89, 339-343. http://dx.doi.org/10.1016/j.sigpro.2008.09.002
|
|
[54]
|
Xu, G., Wang, X. and Xu, X. (2009) The Entropic Uncertainty Principle in Fractional Fourier Transform Domains. Signal Processing, 89, 2692-2697. http://dx.doi.org/10.1016/j.sigpro.2009.05.014
|
|
[55]
|
Xu, G., Wang, X. and Xu, X. (2010) Novel Uncertainty Relations in Frac-tional Fourier Transform Domain for Real Signals. Chinese Physics B, 19, 294-302.
|
|
[56]
|
Xu, G., Wang, X. and Xu, X. (2009) Three Cases of Uncertainty Principle for Real Signals in Linear Canonical Transform Domain. IET Signal Processing, 3, 85-92. http://dx.doi.org/10.1049/iet-spr:20080019
|
|
[57]
|
Zhao, J., Tao, R., Li, Y. and Wang, Y. (2009) Uncertainty Principles for Linear Canonical Transform. IEEE Transactions on Signal Processing, 57, 2856-2858. http://dx.doi.org/10.1109/TSP.2009.2020039
|
|
[58]
|
Xu, G., Wang, X. and Xu, X. (2009) Uncertainty Inequalities for Linear Ca-nonical Transform. IET Signal Processing, 3, 392-402. http://dx.doi.org/10.1049/iet-spr.2008.0102
|
|
[59]
|
Xu, G., Wang, X. and Xu, X. (2009) New Inequalities and Uncertainty Relations on Linear Canonical Transform Revisit. EURASIP Journal on Advances in Signal Processing, 1-17.
|
|
[60]
|
Xia, X.G. (1996) On Bandlimited Signals with Fractional Fourier Transform. IEEE Signal Processing Letter, 3, 72-74.
http://dx.doi.org/10.1109/97.481159
|
|
[61]
|
Donoho, D.L. and Huo, X. (2001) Uncertainty Principles and Ideal Atomic Decom-position. IEEE Transactions on Information Theory, 47, 2845-2862. http://dx.doi.org/10.1109/18.959265
|
|
[62]
|
Calvez, L.C. and Vilbe, P. (1992) On the Uncertainty Principle in Discrete Signals. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39, 394-395. http://dx.doi.org/10.1109/82.145299
|
|
[63]
|
Ishii, R. and Furukawa, K. (1986) The Uncertainty Principle in Discrete Signals. IEEE Transactions on Circuits and Systems, 33, 1032-1034. http://dx.doi.org/10.1109/TCS.1986.1085842
|
|
[64]
|
Doroslovacki, M.I. (1998) Product of Second Moments in Time and Fre-quency for Discrete-Time Signals and the Uncertainty Limit. Signal Processing, 67, 59-76. http://dx.doi.org/10.1016/S0165-1684(98)00022-X
|
|
[65]
|
Venkatesh, Y.V., Kumar, S. and Vidyasagar, G. (2006) On the Uncer-tainty Inequality as Applied to Discrete Signals. International Journal of Mathematics and Mathematical Sciences, 2006, Article ID: 48185.
http://dx.doi.org/10.1155/ijmms/2006/48185
|
|
[66]
|
Wilk, G. and Włodarczyk, Z. (2009) Uncertainty Relations in Terms of the Tsallis Entropy. Physical Review A, 79, Article ID: 062108. http://dx.doi.org/10.1103/PhysRevA.79.062108
|
|
[67]
|
Bahri, M., Hitzer, E.S.M., Hayashi, A. and Ashino, R. (2008) An Uncertainty Principle for Quaternion Fourier Transform. Computers and Ma-thematics with Applications, 56, 2398-2410.
http://dx.doi.org/10.1016/j.camwa.2008.05.032
|
|
[68]
|
Stark, H. (1971) An Extension of the Hilbert Transform Product Theorem. Proceedings of the IEEE, 59, 1359-1360.
http://dx.doi.org/10.1109/PROC.1971.8420
|
|
[69]
|
Havlicek, J.P., Havlicek, J.W., Mamuya, N.D. and Bovik, A.C. (1998) Skewed 2D Hilbert Transforms and Computed AM-FM Models. Proceedings of 1998 International Conference on Image Processing, 1, 602-606.
http://dx.doi.org/10.1109/icip.1998.723573
|
|
[70]
|
Thomas, B. and Gerald, S. (2001) Hypercomplex Signals: A Novel Extension of the Analytic Signal to the Multidimensional Case. IEEE Transaction on Signal Processing, 49, 2844-2852. http://dx.doi.org/10.1109/78.960432
|
|
[71]
|
Sangwine, S.J. and Ell, T.A. (2001) Hypercomplex Fourier Transforms of Color Im-ages. IEEE International Conference on Image Processing, 1, 137-140. http://dx.doi.org/10.1109/icip.2001.958972
|
|
[72]
|
Bedrosian, E. (1963) A Product Theorem for Hilbert Transform. Proceedings of the IEEE, 51, 868-869.
http://dx.doi.org/10.1109/PROC.1963.2308
|
|
[73]
|
徐冠雷, 王孝通, 徐晓刚. 二象Hilbert变换[J]. 自然科学进展, 2007, 17(8): 1120-1129.
|
|
[74]
|
Fu, Y.X. and Li, L.Q. (2006) A Generalized Bedrosian Theorem in Fractional Fourier Domain. 2006 International Conference on Computational Intelligence and Security, 2, 1785-1788. http://dx.doi.org/10.1109/ICCIAS.2006.295369
|
|
[75]
|
Xu, G., Wang, X. and Xu, X. (2009) Generalized Hilbert Transform and Its Properties in 2D LCT Domain. Signal Processing, 89, 1395-1402. http://dx.doi.org/10.1016/j.sigpro.2009.01.009
|
|
[76]
|
Tao, R., Wang, X. and Wang, Y. (2009) Generalization of Fractional Hilbert Transform. IEEE Signal Processing Letter, 15, 365-368.
|
|
[77]
|
Pei, S.C. and Ding, J.J. (2001) Two-Dimensional Affine Generalized Fractional Fourier Transform. IEEE Transaction on Signal Processing, 49, 1638-1655.
|
|
[78]
|
Xu, G., Wang, X. and Xu, X. (2009) Improved Bi-Dimensional EMD and Hilbert Spectrum for the Analysis of Textures. Pattern Recognition, 42, 718-734. http://dx.doi.org/10.1016/j.patcog.2008.09.017
|
|
[79]
|
Zheng, S., Shi, W., Liu, J. and Tian, J. (2008) Remote Sensing Image Fusion Using Multiscale Mapped LS-SVM. IEEE Transactions on Geoscience and Remote Sensing, 46, 1313-1322. http://dx.doi.org/10.1109/TGRS.2007.912737
|
|
[80]
|
Zheng, S., Shi, W., Liu, J. and Tian, J. (2007) Multi Source Image Fusion Method Using Support Value Transform. IEEE Transactions on Image Processing, 16, 1831-1839. http://dx.doi.org/10.1109/TIP.2007.896687
|
|
[81]
|
Aanæs, H., Sveinsson, J.R., Nielsen, A., Thomas, B. and Benediktsson, J. (2008) Model-Based Satellite Image Fusion. IEEE Transactions on Geoscience and Remote Sensing, 46, 1336-1346. http://dx.doi.org/10.1109/TGRS.2008.916475
|
|
[82]
|
Thomas, C., Ranchin, T., Wald, L. and Chanussot, J. (2008) Synthesis of Multispectral Images to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics. IEEE Transactions on Geoscience and Remote Sensing, 46, 1301-1312. http://dx.doi.org/10.1109/TGRS.2007.912448
|
|
[83]
|
Liu, Z., Forsyth, D.S., Safizadeh, M.S. and Fahr, A. (2008) A Data-Fusion Scheme for Quantitative Image Analysis by Using Locally Weighted Regression and Dempster-Shafer Theory. IEEE Transactions on Instrumentation and Measurement, 57, 2554-2560. http://dx.doi.org/10.1109/TIM.2008.924933
|
|
[84]
|
覃征, 鲍复民, 等. 数字图象融合[M]. 西安: 西安交通大学出版社, 2004: 7.
|
|
[85]
|
那彦, 焦李成. 基于多分辨分析理论的图象融合方法[M]. 西安: 西安电子科技大学出版社, 2007: 5.
|
|
[86]
|
Xu, G., Wang, X. and Xu, X. (2010) On Uncertainty Principle for the Linear Canonical Transform of Complex Signals. IEEE Transactions on Signal Processing, 58, 4916-4918. http://dx.doi.org/10.1109/TSP.2010.2050201
|
|
[87]
|
徐冠雷. 分量分解的信号变换及信号分辨率分析研究[D]: [博士学位论文]. 大连: 海军大连舰艇学院, 2009: 7.
|
|
[88]
|
Ding, J.J. and Pei, S.C. (2013) Heisenberg’s Uncertainty Principles for the 2-D Nonseparable Linear Canonical Transforms. Signal Processing, 93, 1027-1043. http://dx.doi.org/10.1016/j.sigpro.2012.11.023
|
|
[89]
|
Shi, J., Liu, X. and Zhang, N. (2012) On Uncertainty Principle for Signal Concentrations with Fractional Fourier Transform. Signal Processing, 92, 2830-2836. http://dx.doi.org/10.1016/j.sigpro.2012.04.008
|
|
[90]
|
Zhao, J., Tao, R. and Wang, Y. (2010) On Signal Moments and Uncertainty Relations Associated with Linear Canonical Transform. Signal Processing, 90, 2686-2689. http://dx.doi.org/10.1016/j.sigpro.2010.03.017
|
|
[91]
|
Xu, G., Wang, X., Zhou, L. and Xu, X. (2013) New Inequalities on Sparse Representation in Pairs of Bases. IET Signal Processing, 7, 674-683. http://dx.doi.org/10.1049/iet-spr.2012.0365
|
|
[92]
|
Xu, G., Wang, X., Zhou, L., Shao, L. and Xu, X. (2013) Discrete Entropic Uncertainty Relations Associated with FRFT. Journal of Signal and Information Processing, 4, 120-124. http://dx.doi.org/10.4236/jsip.2013.43B021
|
|
[93]
|
Xu, G., Wang, X. and Xu, X. (2014) Generalized Uncertainty Principles Associated with Hilbert Transform. Signal, Image and Video Processing, 8, 279-285. http://dx.doi.org/10.1007/s11760-013-0547-x
|
|
[94]
|
Xu, G., Wang, X., Xu, X., Hu, J. and Li, B. (2015) Discrete Inequalities on LCT. Journal of Signal and Information Processing, 6, 146-152. http://dx.doi.org/10.4236/jsip.2015.62014
|
|
[95]
|
Xu, G., Wang, X., Xu, X. and Zhou, L. (2016) Entropic Inequalities on Sparse Representation. IET Signal Processing, 10, 413-421. http://dx.doi.org/10.1049/iet-spr.2014.0072
|