|
[1]
|
Campbell, C.J. and Laherrère, J.H. (1998) The End of Cheap Oil. Scientific American, 278, 78-83. [Google Scholar] [CrossRef]
|
|
[2]
|
Vasudevan, P.T., Gagnon, M.D. and Briggs, M.S. (2010) Environmentally Sustainable Biofuels—The Case for Biodiesel, Biobutanol and Cellulosic Ethanol. Springer, Netherlands, 43-62.
|
|
[3]
|
Zhu, X.F. and Tan, X.S. (2009) Metalloproteins/Metalloenzymes for the Synthesis of Acetyl-CoA in the Wood- Ljungdahl Pathway. Science in China Series B: Chemistry, 52, 2071-2082. [Google Scholar] [CrossRef]
|
|
[4]
|
Budarin, V.L., Shuttleworth, P.S., Dodson, J.R., et al. (2010) Use of Green Chemical Technologies in an Integrated Biorefinery. Energy & Environmental Science, 4, 471-479. [Google Scholar] [CrossRef]
|
|
[5]
|
Tiradoacevedo, O., Chinn, M.S. and Grunden, A.M. (2010) Production of Biofuels from Synthesis Gas Using Microbial Catalysts. Advances in Applied Microbiology, 70, 57-92. [Google Scholar] [CrossRef]
|
|
[6]
|
Maschio, G., Lucchesi, A. and Stoppato, G. (1994) Production of Syngas from Biomass. Bioresource Technology, 48, 119-126. [Google Scholar] [CrossRef]
|
|
[7]
|
Munasinghe, P.C. and Khanal, S.K. (2010) Biomass-Derived Syngas Fermentation into Biofuels: Opportunities and Challenges. Bioresource Technology, 101, 5013-5022. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1991) Bioreactor Design for Synthesis Gas Fermentations. Fuel, 70, 605-614. [Google Scholar] [CrossRef]
|
|
[9]
|
Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1992) Bioconversion of Synthesis Gas into Liquid or Gaseous Fuels. Enzyme & Microbial Technology, 14, 602-608. [Google Scholar] [CrossRef]
|
|
[10]
|
Mohammadi, M., Najafpour, G.D., Younesi, H., et al. (2011) Bioconversion of Synthesis Gas to Second Generation Biofuels: A Review. Renewable & Sustainable Energy Reviews, 15, 4255-4273. [Google Scholar] [CrossRef]
|
|
[11]
|
Fischer, F., Lieske, R. and Winzer, K. (1932) Biologische gasreaktionen. II. Gber die bildung von essigs ure bei der biologischen umsetzung von kohlenoxyd und kohlens ure mit wasserstoff zu methan. Biochemische Zeitschrift, 245, 2-12.
|
|
[12]
|
Wieringa, K.T. (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek, 3, 263-273. [Google Scholar] [CrossRef]
|
|
[13]
|
Wieringa, K.T. (1939) The Formation of Acetic Acid from Carbon Dioxide and Hydrogen by Anaerobic Spore-Form- ing Bacteria. Antonie van Leeuwenhoek, 6, 251-262. [Google Scholar] [CrossRef]
|
|
[14]
|
Fontaine, F.E., Peterson, W.H., Mccoy, E., et al. (1942) A New Type of Glucose Fermentation by Clostridium thermoaceticum. Journal of Bacteriology, 43, 701-715.
|
|
[15]
|
Drake, H.L., Gößner, A.S. and Daniel, S.L. (2008) Old Acetogens, New Light. Annals of the New York Academy of Sciences, 1125, 100-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Henstra, A.M., Sipma, J., Rinzema, A., et al. (2007) Microbiology of Synthesis Gas Fermentation for Biofuel Production. Current Opinion in Biotechnology, 18, 200-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Phillips, J.R., Klasson, K.T., Clausen, E.C., et al. (1993) Biological Production of Ethanol from Coal Synthesis Gas. Applied Biochemistry and Biotechnology, 39-40, 559-571. [Google Scholar] [CrossRef]
|
|
[18]
|
黄格省, 李振宇, 张兰波, 等. 生物丁醇的性能优势及技术进展[J]. 石化技术与应用, 2012, 30(3): 52-57.
|
|
[19]
|
Fernándeznaveira, Á, Abubackar, H.N., Veiga, M.C., et al. (2016) Efficient Butanol-Ethanol (B-E) Production from Carbon Monoxide Fermentation by Clostridium carboxidivorans. Applied Microbiology and Biotechnology, 100, 3361-3370. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bruant, G., Lévesque, M.J., Peter, C., et al. (2012) Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T. PLoS ONE, 5, e13033. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hädicke, O., Grammel, H. and Klamt, S. (2011) Metabolic Network Modeling of Redox Balancing and Biohydrogen Production in Purple Nonsulfur Bacteria. BMC Systems Biology, 5, 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ammam, F., Tremblay, P.L., Lizak, D.M., et al. (2016) Effect of Tungstate on Acetate and Ethanol Production by the Electrosynthetic Bacterium Sporomusa ovata. Biotechnology for Biofuels, 9, 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Phillips, J.R., Atiyeh, H.K., Tanner, R.S., et al. (2015) Butanol and Hexanol Production in Clostridium carboxidivorans Syngas Fermentation: Medium Development and Culture Techniques. Bioresource Technology, 190, 114-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Saxena, J. and Tanner, R.S. (2012) Optimization of a Corn Steep Medium for Production of Ethanol from Synthesis Gas Fermentation by Clostridium ragsdalei. World Journal of Microbiology and Biotechnology, 28, 1553-1561. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cotter, J.L., Chinn, M.S. and Grunden, A.M. (2009) Ethanol and Acetate Production by Clostridium ljungdahlii and Clostridium autoethanogenum Using Resting Cells. Bioprocess and Biosystems Engineering, 32, 369-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Heise, R., Müller, V. and Gottschalk, G. (1989) Sodium Dependence of Acetate Formation by the Acetogenic Bacterium Acetobacterium woodii. Journal of Bacteriology, 171, 5473-5478. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Köpke, M., Held, C., Hujer, S., et al. (2010) Clostridium ljungdahlii Represents a Microbial Production Platform Based on Syngas. Proceedings of the National Academy of Sciences of the United States of America, 107, 13087-13092. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ramiópujol, S., Ganigué, R., Bañeras, L., et al. (2015) How Can Alcohol Production Be Improved in Carboxydotrophic Clostridia? Process Biochemistry, 50, 1047-1055. [Google Scholar] [CrossRef]
|
|
[29]
|
Abubackar, H.N., Veiga, M.C. and Kennes, C. (2012) Biological Conversion of Carbon Monoxide to Ethanol: Effect of pH, Gas Pressure, Reducing Agent and Yeast Extract. Bioresource Technology, 114, 518. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Grethlein, A.J., Worden, R.M., Jain, M.K., et al. (1990) Continuous Production of Mixed Alcohols and Acids from Carbon Monoxide. Applied Biochemistry and Biotechnology, 24-25, 875-884. [Google Scholar] [CrossRef]
|
|
[31]
|
Klasson, K.T., Ackerson, M.D., Clausen, E.C., et al. (1993) Biological Conversion of Coal and Coal-Derived Synthesis Gas. Fuel, 72, 1673-1678. [Google Scholar] [CrossRef]
|
|
[32]
|
Ramiópujol, S., Ganigué, R., Bañeras, L., et al. (2014) Impact of Formate on the Growth and Productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 Grown on Syngas. International Microbiology, 17, 195-204.
|
|
[33]
|
Maddox, I.S., Steiner, E., Hirsch, S., et al. (2000) The Cause of “Acid-Crash” and “Acidogenic Fermentations” during the Batch Acetone-Butanol-Ethanol (ABE-) Fermentation Process. Journal of Molecular Microbiology & Biotechnology, 2, 95.
|
|
[34]
|
Richter, H., Martin, M.E. and Angenent, L.T. (2013) A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies, 6, 3987-4000. [Google Scholar] [CrossRef]
|
|
[35]
|
Kashket, E.R. and Cao, Z.Y. (1995) Clostridial Strain Degeneration. FEMS Microbiology Reviews, 17, 307-315. [Google Scholar] [CrossRef]
|
|
[36]
|
Hurst, K.M. and Lewis, R.S. (2010) Carbon Monoxide Partial Pressure Effects on the Metabolic Process of Syngas Fermentation. Biochemical Engineering Journal, 48, 159-165. [Google Scholar] [CrossRef]
|
|
[37]
|
Younesi, H., Najafpour, G. and Mohamed, A.R. (2006) Ethanol and Acetate Production from Synthesis gas Via Fermentation Processes Using Anaerobic Bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 27, 110-119. [Google Scholar] [CrossRef]
|
|
[38]
|
Shen, Y.W., Brown, R. and Wen, Z.Y. (2014) Enhancing Mass Transfer and Ethanol Production in Syngas Fermentation of Clostridium carboxidivorans P7 through a Monolithic Biofilm Reactor. Applied Energy, 136, 68-76. [Google Scholar] [CrossRef]
|
|
[39]
|
Drzyzga, O., Revelles, O., Duranterodríguez, G., et al. (2015) New Challenges for Syngas Fermentation: Towards Production of Biopolymers. Journal of Chemical Technology & Biotechnology, 90, 1735-1751. [Google Scholar] [CrossRef]
|
|
[40]
|
Singla, A., Verma, D., Lal, B., et al. (2014) Enrichment and Optimization of Anaerobic Bacterial Mixed Culture for Conversion of Syngas to Ethanol. Bioresource Technology, 172, 41-49. [Google Scholar] [CrossRef] [PubMed]
|