| [1] | Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. https://doi.org/10.1038/238037a0
 | 
                     
                                
                                    
                                        | [2] | Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable Sustainable Energy Reviews, 11, 401-425. https://doi.org/10.1016/j.rser.2005.01.009
 | 
                     
                                
                                    
                                        | [3] | Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y. and Zhang, J.Z. (2009) Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small, 5, 104-111. https://doi.org/10.1002/smll.200800902
 | 
                     
                                
                                    
                                        | [4] | Yang, Y., Liu, G., Irvine, J.T.S. and Cheng, H.M. (2016) Enhanced Photocatalytic H2 Production in Core-Shell Engineered Rutile TiO2. Advanced. Materials, 28, 5850-5856. https://doi.org/10.1002/adma.201600495
 | 
                     
                                
                                    
                                        | [5] | Liu, B. and Aydil, E.S. (2009) Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of American Chemical Society, 131, 3985-3990. https://doi.org/10.1021/ja8078972
 | 
                     
                                
                                    
                                        | [6] | Zhang, S., Gu, X.Q., Zhao, Y.L. and Qiang, Y.H. (2015) Enhanced Photoelectrochemical Performance of TiO2 Nanorod Arrays by a 500℃ Annealing in Air: Insights into the Mechanism. Journal of Electronic Materials, 45, 648-653. https://doi.org/10.1007/s11664-015-4166-x
 | 
                     
                                
                                    
                                        | [7] | Wang, X.J., Zhang, S.S., Yao, X.B., Wang, H.J., Yu, H., Shen, Y.X., Li, Z.H., Zhang, S.Q. and Peng, F. (2016) Branched Hydrogenated TiO2 Nanorod Arrays for Improving Photocatalytic Hydrogen Evolution Performance under Simulated Solar Light. International Journal of Hydrogen Energy, 41, 20192-20197. https://doi.org/10.1016/j.ijhydene.2016.09.029
 | 
                     
                                
                                    
                                        | [8] | Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Robert, C., Fitzmorris, C.C., Zhang, J.Z. and Li, Y. (2011) Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letter, 11, 3026- 3033. https://doi.org/10.1021/nl201766h
 | 
                     
                                
                                    
                                        | [9] | Ge, M.Z., Cao, C.Y., Huang, J.Y., Li, S.H., Zhang, S.N., Deng, S., Li, Q.S., Zhang, K.Q. and Lai, Y.K. (2016) Synthesis, Modification, and Photo/Photoelectrocatalytic Degradation Applications of TiO2 Nanotube Arrays: A Review. Nanotechnology Reviews, 5, 75-112. https://doi.org/10.1515/ntrev-2015-0049
 | 
                     
                                
                                    
                                        | [10] | Chiarello, G.L., Zuliani, A., Ceresoli, D., Martinazzo, R. and Selli, E. (2016) Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays to Enhance Photocatalytic Hydrogen Production. ACS Catalysis, 6, 1345-1353. https://doi.org/10.1021/acscatal.5b02817
 | 
                     
                                
                                    
                                        | [11] | Fernandez-Domene, R.M., Sanchez-Tovar, R., Sanchez-Gonzalez, S. and Garcia-Anton, J. (2016) Photoelectrochemical Characterization of Anatase-Rutile Mixed TiO2 Nanosponges. International Journal of Hydrogen Energy, 41, 18380-18388. https://doi.org/10.1016/j.ijhydene.2016.08.012
 | 
                     
                                
                                    
                                        | [12] | Ma, Y., Wang, X.L., Jia, Y.S., Chen, X.B., Han, H.X. and Li, C. (2014) Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 114, 9987-10043. https://doi.org/10.1021/cr500008u
 | 
                     
                                
                                    
                                        | [13] | Huang, P.C., Sung, C.C., Chou, A.H., Kao, J.Y. and Hsu, C.Y. (2016) Preparation and Characterization of TiO2 Photocatalyst Thin Films Using Radio Frequency Sputtering. Journal of Computational Theoretical Nanoscience, 13, 982- 988. https://doi.org/10.1166/jctn.2016.4902
 | 
                     
                                
                                    
                                        | [14] | Li, A.L., Wang, Z.L., Yin, H., Wang, S.Y., Yan, P.L., Huang, B.K., Wang, X.L., Li, R.G., Zong, X., Han, H.X. and Li, C.(2016) Understanding the Anatase-Rutile Phase Junction in Charge Separation and Transfer in a TiO2 Electrode for Photoelectrochemical Water Splitting. Chemical Science, 7, 6076-6082. | 
                     
                                
                                    
                                        | [15] | Sutiono, H., Tripathi, A.M., Chen, H.M., Chen, C.H., Su, W.N., Chen, L.Y., Dai, H.J. and Hwang, B.J. (2016) Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase-Rutile Heterojunction for Efficient Solar Water Splitting. ACS Sustainable Chemistry & Engineering, 4, 5963-5971. https://doi.org/10.1021/acssuschemeng.6b01066
 | 
                     
                                
                                    
                                        | [16] | Yao, H.Z., Fu, W.Y., Liu, L., Li, X., Ding, D., Su, P.Y., Feng, S. and Yang, H.B. (2016) Hierarchical Photoanode of Rutile TiO2 Nanorods Coupled with Anatase TiO2 Nanosheets Array for Photoelectrochemical Application. Journal of Alloys and Compounds, 680, 206-211. https://doi.org/10.1016/j.jallcom.2016.04.133
 | 
                     
                                
                                    
                                        | [17] | Cao, F.R., Xiong, J., Wu, F.L., Liu, Q. Shi, Z.W., Yu, Y.H., Wang, X.D. and Li, L. (2016) Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Applied Materials & Interfaces, 8, 12239-12245. https://doi.org/10.1021/acsami.6b03842
 | 
                     
                                
                                    
                                        | [18] | Hoyer, P. (1996) Formation of a Titanium Dioxide Nanotube Array. Langmuir, 12, 1411-1413. https://doi.org/10.1021/la9507803
 | 
                     
                                
                                    
                                        | [19] | Wang, W.H., Dong, J.Y., Ye, X.Z., Li, Y., Ma, Y.R. and Qi, L. (2016) Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Small, 12, 1469-1478. https://doi.org/10.1002/smll.201503553
 | 
                     
                                
                                    
                                        | [20] | Fujishima, M., Nakabayashi, Y., Takayama, K., Kobayashi, H. and Tada, H. (2016) High Coverage Formation of CdS Quantum Dots on TiO2 by the Photocatalytic Growth of Preformed Seeds. Journal of Physical Chemistry C, 120, 17365-17371. | 
                     
                                
                                    
                                        | [21] | Liu, C.J., Yang, Y.H., Li, W.Z., Li, J., Li, Y.M. and Chen, Q.Y. (2016) A Novel Bi2S3 Nanowire @ TiO2 Nanorod Heterogeneous Nanostructure for Photoelectrochemical Hydrogen Generation. Chemical Engineering Journal, 302, 717-724. https://doi.org/10.1016/j.cej.2016.05.126
 | 
                     
                                
                                    
                                        | [22] | Chan, C.H., Samikkannu, P. and Wang, H.W. (2016) Fe2O3/CdS Co-Sensitized Titania Nanotube for Hydrogen Generation from Photocatalytic Splitting Water. International Journal of Hydrogen Energy, 41, 17818-17825. https://doi.org/10.1016/j.ijhydene.2016.08.026
 | 
                     
                                
                                    
                                        | [23] | Fan, W.Q., Yu, X.Q., Lu, H.C., Bai, H.Y., Zhang, C. and Shi, W.D. (2016) Fabrication of TiO2 /RGO/Cu2O Heterostructure for Photoelectrochemical Hydrogen Production. Applied Catalysis B: Environment, 181, 7-15. https://doi.org/10.1016/j.apcatb.2015.07.032
 |