|
[1]
|
Blennow, K., De Leon, M.J., et al. (2006) Alzheimer’s Disease. Lancet, 368, 387-403. [Google Scholar] [CrossRef]
|
|
[2]
|
Ties, W. and Bleiler, L. (2013) Alzheimer’s Association. 2013 Alz-heimer’s Disease Facts and Figures. Alzheimers Dement, 9, 208-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Huang, E.J. and Reichardt, L.F. (2001) Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience, 24, 677-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Minichiello, L. (2009) TrkB Signalling Pathways in LTP and Learning. Nature Reviews Neuroscience, 10, 850-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Koponen, E., Voikar, V., et al. (2004) Transgenic Mice Overexpressing the Full-Length Neurotrophin Receptor TrkB Exhibit Increased Activation of the TrkB-PLC Gamma Pathway, Reduced Anxiety, and Facilitated Learning. Molecular and Cellular Neuroscience, 26, 166-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mattson, M.P., Maudsley, S. and Martin, B. (2004) A Neural Signaling Triumvirate That Influences Ageing and Age Related Disease: Insulin/IGF-1, BDNF and Serotonin. Ageing Research Reviews, 3, 445-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bekinschtein, P., Cammarota, M., et al. (2008) BDNF Is Essential to Promote Persistence of Long-Term Memory Storage. Proceedings of the National Academy of Sciences USA, 105, 2711-2716. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zuccato, C. and Cattaneo, E. (2009) Brain-Derived Neurotrophic Factor in Neurodegenerative Diseases. Nature Reviews Neurology, 5, 311-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Castello, N.A., Green, K.N., et al. (2012) Genetic Knockdown of Brain-Derived Neurotrophic Factor in 3xTg-AD Mice Does Not Alter Abeta or Tau Pathology. PLoS One, 7, 539-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jimenez, S., Torres, M., et al. (2011) Age-Dependent Accumulation of Soluble Amyloid β (Aβ) Oligomers Reverses the Neuroprotective Effect of Soluble Amyloid Precursor Protein-α (sAPPα) by Modulating Phosphatidylinositol 3-Kinase (PI3K)/Akt-GSK-3β Pathway in Alzheimer Mouse Model. Journal of Biological Chemistry, 286, 18414- 18425. [Google Scholar] [CrossRef]
|
|
[11]
|
Huang, W.D., Cao, J., et al. (2015) AMPK Plays a Dual Role in Regulation of CREB/BDNF Pathway in Mouse Primary Hippocampal Cells. Journal of Molecular Neuroscience, 56, 782-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zeng, Y., Zhao, D., et al. (2010) Neurotrophins Enhance CaMKII Activity and Rescue Amyloid-β-Induced Deficits in Hippocampal Synaptic Plasticity. Journal of Alzheimer’s Disease, 21, 823-831. [Google Scholar] [CrossRef]
|
|
[13]
|
Poon, W.W., Blurton, M., et al. (2011) Beta-Amyloid Impairs Axonal BDNF Retrograde Trafficking. Neurobiology of Aging, 32, 821-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Holback, S., Adlerz, L., et al. (2005) Increased Processing of APLP2 and APP with Concomitant Formation of APP Intracellular Domains in BDNF and Retinoic Acid Differentiated Human Neuroblastoma Cells. Journal of Neurochemistry, 95, 1059-1068. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Elliott, E., Atlas, R., Lange, A., et al. (2005) Brain-Derived Neurotrophic Factor Induces a Rapid Dephosphorylation of Tau Protein through a PI-3 Kinase Signaling Mechanism. European Journal of Neuroscience, 22, 1081-1089. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shankar, G.M. and Walsh, D.M. (2009) Alzheimer’s Disease: Synaptic Dysfunction and Abeta. Molecular Neurodegeneration, 4, 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fritsch, B., et al. (2010) Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 66, 198-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zeng, Y., Zhao, D., et al. (2010) Neurotrophins Enhance CaMKII Activity and Rescue Amyloid-Beta-Induced Deficits in Hippocampal Synaptic Plasticity. Journal of Alzheimer’s Disease, 21, 823-831. [Google Scholar] [CrossRef]
|
|
[20]
|
Ninan, I., Bath, K.G., et al. (2010) The BDNF Val66Met Polymorphism Impairs NMDA Receptor-Dependent Synaptic Plasticity in the Hippocampus. Journal of Neuroscience, 30, 8866-8870. [Google Scholar] [CrossRef]
|
|
[21]
|
Autio, H., Matlik, K., et al. (2011) Acetylcholinesterase Inhibitors Rapidly Activate Trk Neurotrophin Receptors in the Mouse Hippocampus. Neuropharmacology, 61, 1291-1296. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wu, H.M., Tzeng, N.S., et al. (2009) Novel Neuroprotective Mechanisms of Memantine: Increase in Neurotrophic Factor Release from Astroglia and Anti-Inflammation by Preventing Microglial Activation. Neuropsychopharmacology, 34, 2344-2357. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Luo, J., Zhang, L., et al. (2013) Neotrofin Reverses the Effects of Chronic Unpredictable Mild Stress on Behavior via Regulating BDNF, PSD-95 and Synaptophysin Expression in Rat. Behavioural Brain Research, 253, 48-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hoppe, J.B., Coradini, K., et al. (2013) Free and Nanoencapsulated Curcumin Suppress Beta-Amyloid-Induced Cognitive Impairments in Rats: Involvement of BDNF and Akt/GSK-3beta Signaling Pathway. Neurobiology of Learning and Memory, 106, 134-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nagahara, A.H., Mateling, M., et al. (2013) Early BDNF Treatment Ameliorates Cell Loss in the Entorhinal Cortex of APP Transgenic Mice. Journal of Neuroscience, 33, 15596-15602. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, Z., Liu, X., et al. (2014) 7,8-Dihydroxyflavone Prevents Synaptic Loss and Memory Deficits in a Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology, 39, 638-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Blurton, J.M., Kitazawa, M., et al. (2009) Neural Stem Cells Improve Cognition via BDNF in a Transgenic Model of Alzheimer Disease. Proceedings of the National Academy of Sciences, 106, 13594-13599. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shin, M.K., Kim, H.G., et al. (2014) Neuropep-1 Ameliorates Learning and Memory Deficits in an Alzheimer’s Disease Mouse Model, Increases Brain-Derived Neurotrophic Factor Expression in the Brain, and Causes Reduction of Amyloid Beta Plaques. Neurobiology of Aging, 35, 990-1001. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hsiao, Y.H., Hung, H.C., et al. (2014) Social Interaction Rescues Memory Deficit in an Animal Model of Alzheimer’s Disease by Increasing BDNF-Dependent Hippocampal Neurogenesis. Journal of Neuroscience, 34, 16207-16219. [Google Scholar] [CrossRef]
|
|
[30]
|
Coelho, F.G., Vital, T.M., et al. (2014) Acute Aerobic Exercise Increases Brain-Derived Neurotrophic Factor Levels in Elderly with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 39, 401-408.
|