抛物型方程的反系数问题研究
Inverse Coefficient Problems for a Parabolic Equation
摘要:
研究了一类抛物型方程的反系数问题,利用变分方法获得了方程弱解的存在性与唯一性,利用Schauder不动点定理得到了反系数问题解的存在性。
Abstract: This paper is devoted to a class of inverse coefficient problems for a Parabolic Equation, We obtain an existence and uniqueness theorem of weak solutions. Using the theories of Schauder Fixed-Point Theorem, an existence theorem is established for the inverse coefficient problems solutions.
参考文献
|
[1]
|
V. L. Kamynin, A. B. Kostin. Two inverse problems of finding a coefficient in a parabolic equation. Differential Equations, 2010, 46(3): 375-386.
|
|
[2]
|
V. L. kamynin. On the inverse of determining the leading coefficient in parabolic equations. Matematicheskie Zimetki, 2008, 84(1): 48-58.
|
|
[3]
|
Z.-C. Deng, L. Yang, J.-N. Yu, and G.-W. Luo. Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method. Journal of Mathematical Analysis and Applications, 2010, 362(1): 210-223.
|
|
[4]
|
A. I. Prilepko, D. S. Tkachenko. Well-posedness of the inverse source problem for parabolic systems. Differential Equations, 2004, 40(11): 1619-1626.
|
|
[5]
|
Z. H. Liu. Identification of parameters in semilinear parabolic equations. Acta Mathematica Scientia, 1999, 19(2): 175-180.
|
|
[6]
|
A. G. Fatullayev, S. Cula. An iterative procedure for determining an unknown spacewise-dependent coefficient in a parabolic equation. Applied Mathematics Letters, 2009, 22(7): 1033-1037.
|
|
[7]
|
W. H. Yu. Inverse problems in partial differential equations. Tianjin: Nankai University, 1989.
|
|
[8]
|
王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009: 210-214.
|
|
[9]
|
伍卓群, 尹景学, 王春朋. 椭圆与抛物型方程引论[M]. 北京:科学出版社, 2003.
|
|
[10]
|
E. Zeidler. Nonlinear functional analysis and its applications II A/B. New York: Springer, 1990.
|