|
[1]
|
M. J. Ablowitz, P. A. Clarkson. Solitons, nonlinear evolution equations and inverse scattering. New York: Cambridge University Press, 1991.
|
|
[2]
|
D. C. Lu, B. J. Hong, and L. X. Tian. Backlund transformation and n-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients. International Journal of Nonlinear Science, 2006, 2(1): 3-10.
|
|
[3]
|
V. B. Matveev, M. A. Salle. Darbooux transformation and soliton. Berlin: Springer, 1991.
|
|
[4]
|
B. J. Hong. New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation. Applied Mathematics and Computation, 2009, 215(8): 2908-2913.
|
|
[5]
|
E. G. Fan. Two new applications of the homogeneous balance method. Physics Letters A, 2000, 265(5-6): 353-357.
|
|
[6]
|
D. C. Lu, B. J. Hong, and L. X. Tian. New explicit exact solutions for the generalized coupled Hirota-Satsuma kdv system. Computers & Mathematics with Applications, 2007, 53(8): 1181-1190.
|
|
[7]
|
D. C. Lu, B. J. Hong. New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup System. Applied Mathematics and Computation, 2008, 199(2): 572-580.
|
|
[8]
|
D. C. Lu, B. J. Hong, and L. X. Tian. New Solitary wave and periodic wave solutions for general types of KdV and KdV- Burgers equations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 77-84.
|
|
[9]
|
R. Hirota, J. Satsuma. Soliton solutions of a coupled Korteweg- de Vries equation. Physics Letters A, 1981, 85(8-9): 407-415.
|
|
[10]
|
M. L. Wang, Y. M. Wang. A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients. Physics Letters A, 2001, 287(3-4): 211-216.
|
|
[11]
|
E. G. Fan. Auto-Backlund transformation and similarity reductions for general variable coefficient KdV equations. Physics Letters A, 2002, 294(1): 26-30.
|
|
[12]
|
Y. B. Zhou, M. L. Wang, and Y. M. Wang. Perodic wave solutions to a coupled Kdv equations with variable coefficients. Physics Letters A, 2003, 308(1): 31-36.
|