撤稿:拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法
RETRACTED: An Entropy Clustering Method for the Model and Its Algorithm of the Maximizing a Submodular Function Subject to a Matroid Constraint
DOI: 10.12677/CSA.2017.710112, PDF, HTML,    国家科技经费支持
作者: 梁国宏*:西北工业大学计算机学院,陕西 西安;空军工程大学理学院,陕西 西安;李 映:西北工业大学计算机学院,陕西 西安;叶 萌:94826部队,上海;李炳杰:空军工程大学理学院,陕西 西安
关键词: 聚类图理论信息理论子模函数离散优化Clustering Graph Theory Information Theory Submodular Function Discrete Optimization
摘要: 撤稿声明:“拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法”一文刊登在2017年10月出版的《计算机科学与应用》2017年第7卷第10期第994-1001页上。该文存在署名争议,属于学术不端行为。为避免造成不良后果,根据国际出版流程,编委会现决定撤除此稿件:梁国宏, 李映, 叶萌, 李炳杰. 拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法[J]. 计算机科学与应用, 2017, 7(10): 994-1001. https://doi.org/10.12677/CSA.2017.710112
文章引用:梁国宏, 李映, 叶萌, 李炳杰. 撤稿:拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法[J]. 计算机科学与应用, 2017, 7(10): 994-1001. https://doi.org/10.12677/CSA.2017.710112

参考文献

[1] Liu, M.Y., Tuzel, O., Ramalingam, S. and Chellappa, R. (2014) Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] Ye, X. and Guo, L.J. (2012) Consructing Affinity Matrix in Spectral Clustering Based on Neighbor Propagation. Neu-rocomputing.
[3] Lin, H. and Bilmes, J. (2011) Word Alignment via Submodular Maximization over Matroids. Proceedings of the 49th Annual Meeting of the Association Computational Linguistics: Human Language Technologies—Short Papers, 2, 170-175.
[4] Cao, J., Chen, P., Zheng, Y. and Dai, Q. (2013) A Max-Flow-Based Similarity Measure for Spectral Clustering. ETRI Journal, 35.
[5] Chakrabarti, A. and Kale, S. (2013) Submodular Maximization Meets Streaming: Matchings, Matroids, and More. Data Structures and Algorithms.
[6] Liu, M.Y., Tuzel, O., Ramalingam, S. and Chellappa, R. (2011) Entropy Rate Superpixel Segmentation. IEEE Conference on Compute Vision and Pattern Recognition.
[7] Zhang, X., Li, J. and Yu, H. (2011) Local Density Adaptive Similarity Measurement for Spectral Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 352-358.
[8] Cover, T.M. and Thomas, J.A. (1991) Elements of Information Theory. 2nd Edition, John Wiley & Sons.
https://doi.org/10.1002/0471200611
[9] Hua, L. (2014) Application of Spectral Clustering and Entropy in Clustering. Zhejiang University, 25-29.
[10] Liu, M.-Y., Tuzel, O., Ramalingam, S. and Chellappa, R. (2014) Entropy-Rate Clustering: Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid Constraint. Pattern Analysis and Machine Intelligence, 36, 99-105.
[11] Nemhauser, G.L., Wolsey, L.A. and Fisher, M.L. (1978) An Analysis of the Approximations for Maximizing Submodular Set Functions. Mathematical Programming, 14, 265-294.
https://doi.org/10.1007/BF01588971
[12] Oxley, J. (1992) Matroid Theory. Oxford Univ. Press, Oxford.
[13] Badanidoyuri, A. and Vondrak, J. (2014) Fast Algorithms for Maximizing Submodular Functions. Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, 1497-1514.
https://doi.org/10.1137/1.9781611973402.110
[14] Fisher, M.L., Nemhauser, G.L. and Wolsey, L.A. (1978) An Analysis of the Approximations for Maximizing Submodular Set Functions. Mathematical Programming, 8, 73-87.
https://doi.org/10.1007/BFb0121195
[15] Oliva, A. and Torralba, A. (2001) Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 42, 145-175.
https://doi.org/10.1023/A:1011139631724
[16] Frey, B.J. and Dueck, D. (2007) Clustering by Passing Messages between Data Points. Science, 315, 972-976.
https://doi.org/10.1126/science.1136800