1. 引言
差分方程在工程技术、经济理论和社会科学中有着十分重要的作用。因此,有许多作者从事差分方程的研究,并取得了很多成果,可参见文献 [1] [2] [3] [4] 。本文将研究如下的二阶非线性差分方程:
  (1.1)
其初始 
  。
设I为某实数区间,函数 
  连续可微, 
  ,差分方程:
  (1.2)
其初始值 
  。
关于差分方程的平衡点、平衡点的稳定性和渐近稳定性以及渐近平衡点的吸引域的有关概念请参看文献 [5] 。
设 
  是方程(1.2)的平衡点,令
 
称方程:
  (1.3)
为方程(1.2)在平衡点 
  处的线性化方程;
称方程:
  (1.4)
为方程(1.3)的特征方程(参看文献 [5] )。
引理1.1 [5] :设ƒ是定义在点 
  处的某个开邻域内的连续可微函数,其中 
  是方程(1.2)的平衡点。若方程(1.3)的全部特征根的模都小于1,则方程(1.2)的平衡点 
  是(局部)渐近稳定的;若方程(1.3)至少有一个特征根的模大于1,则方程(1.2)的平衡点 
  是不稳定的。
上述差分方程(1.1)有两个平衡点 
  和 
  。在平衡点 
  处,其线性化方程的特征根
 
所以平衡点 
  是渐近稳定的。在平衡点 
  处,其线性化方程有一特征根:
 
所以平衡点 
  是不稳定的。
本文给出了平衡点 
  的吸引域的子域。即当初始值 
  在这个子域中时,方程(1.1)的解收敛到零;同时给出了当初始值 
  在一定的条件下方程(1.1)的解发散到无穷大的结论。
2. 主要结果
在初始值 
  满足条件: 
  时,方程(1.1)的解发散到无穷。我们在此只给出平衡点 
  的吸引域的一个子域。
定理2.1:设 
  ,其中 
  ,则D是平衡点 
  的吸引域的子域。即 
  方程(1.1)的解 
  满足:
  .
证明: 
  ,有 
  ,
 
令 
  ,则 
  ,
则, 
  ,
 
设 
  ,则
  ,
  .
故, 
  成立。
由此得 
  。
从而, 
  。证毕。
注记2.1:定理2.1给出了平衡点 
  的吸引域的子域,也暗示了在初始值 
  满足条件: 
  时,方程(1.1)的解有可能收敛到零,也可能发散到无穷大。
定理2.2:当 
  或 
  时,方程(1.1)的解 
  发散到无穷大。即:
 
证明: ,
  ,
令 
  ,
则 
  。
假设 
  ,
则 
  ,
  .
即 
  , 
  , 
  , 
  。
所以 
  , 
  。
从而得 
  。证毕。
注记2.2:首先,我们可以判断平衡点 
  的吸引域的边界曲线是:
  ,
且 
  是关于 
  单调递减的和经过点 
  ,其中c是某个常数。但要具体地求出c的值是不容易的,若要确定这条边界曲线那就更复杂了。
下面我们来估计一下常数c的取值范围。
设 
  ,则 
  ;
  ;
  ;
由此得, 
  。
所以, 
  。
另一方面,由定理2.1知,当 
  , 
  时, 
  。
综上可得, 
  。
其次,当 
  时,我们来估计一下 
  的取值范围。
  ;
  ;
同上可得, 
  。
由于 
  可知,定理2.1中的吸引域的子域已经是吸引域的大部分了。
基金项目
国家自然科学基金(61362033);四川省科技厅基础研究计划(2011JYZ002);西南交通大学本科教育教学研究与改革项目(201704010)。