|
[1]
|
Baker, C., Pradhan, A., Pakstis, L., Pochan, D.J. and Shah, S.I. (2005) Synthesis and Antibacterial Properties of Silver Nanoparticles. Journal of Nanoscience & Nanotechnology, 5, 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gromov, D.G., Pavlova, L.M., Savitsky, A.I. and Trifonov, A.Y. (2015) Nucleation and Growth of Ag Nanoparticles on Amorphous Carbon Surface from Vapor Phase Formed by Vacuum Evaporation. Applied Physics A, 118, 1297-1303. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhao, Z., Sun, J., Xing, S., Liu, D., Zhang, G., Bai, L. and Jiang, B. (2016) Enhanced Raman Scattering and Photocatalytic Activity of TiO2 Films with Embedded Ag Nanoparticles Deposited by Magnetron Sputtering. Journal of Alloys & Compounds, 679, 88-93.
|
|
[4]
|
Boutinguiza, M., Comesaña, R., Lusquiños, F., Riveiro, A., Val, J.D. and Pou, J. (2015) Production of Silver Nanoparticles by Laser Ablation in Open Air. Applied Surface Science, 336, 108-111.
|
|
[5]
|
Zhou, X., Li, W., Wu, M., Tang, S. and Liu, D. (2014) Enhanced Dispersibility and Dispersion Stability of Dodecy-lamine-Protected Silver Nanoparticles by Dodecanethiol for Ink-Jet Conductive Inks. Applied Surface Science, 292, 537-543.
|
|
[6]
|
Manikam, V.R., Cheong, K.Y. and Razak, K.A. (2011) Chemical Reduction Methods for Synthesizing Ag and Al Na-noparticles and Their Respective Nanoalloys. Materials Science and Engineering: B, 176, 187-203.
[Google Scholar] [CrossRef]
|
|
[7]
|
Creighton, J.A., Blatchford, C.G. and Albrecht, M.G. (1979) Plasma Resonance Enhancement of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 75, 790-798.
|
|
[8]
|
Lee, P. and Meisel, D. (1982) Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. The Journal of Physical Chemistry, 86, 3391-3395. [Google Scholar] [CrossRef]
|
|
[9]
|
Singha, D., Barman, N. and Sahu, K. (2014) A Facile Synthesis of High Optical Quality Silver Nanoparticles by Ascorbic Acid Reduction in Reverse Micelles at Room Temperature. Journal of Colloid & Interface Science, 413, 37-42.
[Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Huang, Z., Jiang, H., Liu, P., Sun, J., Guo, D., Shan, J. and Gu, N. (2015) Con-tinuous Synthesis of Size-Tunable Silver Nanoparticles by a Green Electrolysis Method and Multi-Electrode Design for High Yield. Journal of Materials Chemistry A, 3, 1925-1929. [Google Scholar] [CrossRef]
|
|
[11]
|
Mukherjee, P., Roy, M., Mandal, B., Dey, G., Mukherjee, P., Ghatak, J., Tyagi, A. and Kale, S. (2008) Green Synthesis of Highly Stabilized Nanocrystalline Silver Particles by a Non-Pathogenic and Agriculturally Important Fungus T. asperellum. Nanotechnology, 19, Article ID: 075103. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ashokkumar, S., Ravi, S. and Velmurugan, S. (2013) Green Synthesis of Silver Nanoparticles from Gloriosa superba L. Leaf Extract and Their Catalytic Activity. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 115C, 388-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cho, K.-H., Park, J.-E., Osaka, T. and Park, S.-G. (2005) The Study of Antimicrobial Activity and Preservative Effects of Nanosilver Ingredient. Electrochimica Acta, 51, 956-960. [Google Scholar] [CrossRef]
|
|
[14]
|
Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R. and Minaian, S. (2007) Synthesis and Effect of Silver Nanoparticles on the Antibacterial Activity of Different Antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3, 168-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
李志军, 吴骁锋, 郑凯, 姚建平, 胡菲, 杨鑫林. 关于纳米银对耐药菌抑制效果研究[J]. 广州化工, 2013, 41(12): 102-104.
|
|
[16]
|
Pickup, J.C., Zhi, Z.L., Khan, F., Saxl, T. and Birch, D.J. (2008) Nanomedicine and Its Potential in Diabetes Research and Practice. Diabetes/Metabolism Research and Reviews, 24, 604-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Caro, C., Zaderenko, A.P., Pozo, D., Castillo, P.M. and Klippstein, R. (2010) Silver Nanoparticles: Sensing and Imaging Applications. INTECH Open Access Publisher, London.
|
|
[18]
|
吕璞, 龚继来, 王喜洋, 曾光明, 崔卉, 胡家文. 表面增强拉曼散射技术鉴别大肠杆菌和志贺氏菌的研究[J]. 中国环境科学, 2011, 31(9): 1523-1527.
|
|
[19]
|
Guerrini, L., Garciaramos, J.V., Domingo, C. and Sanchezcortes, S. (2009) Nanosensors Based on Viologen Functionalized Silver Nanoparticles: Few Molecules Surface-Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots. Analytical Chemistry, 81, 1418-1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ameen, K.B., Rajasekar, K. and Rajasekharan, T. (2007) Silver Nanoparticles in Mesoporous Aerogel Exhibiting Selective Catalytic Oxidation of Benzene in CO2 Free Air. Catalysis Letters, 119, 289-295.
[Google Scholar] [CrossRef]
|
|
[21]
|
Liu, J.-H., Wang, A.-Q., Chi, Y.-S., Lin, H.-P. and Mou, C.-Y. (2005) Syner-gistic Effect in an Au-Ag Alloy Nanocatalyst: CO Oxidation. The Journal of Physical Chemistry B, 109, 40-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hu, A., Guo, J., Alarifi, H., Patane, G., Zhou, Y., Compagnini, G. and Xu, C. (2010) Low Temperature Sintering of Ag Nanoparticles for Flexible Electronics Packaging. Applied Physics Letters, 97, Article ID: 153117.
[Google Scholar] [CrossRef]
|
|
[23]
|
Hu, L., Kim, H.S., Lee, J.-Y., Peumans, P. and Cui, Y. (2010) Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 4, 2955-2963. [Google Scholar] [CrossRef] [PubMed]
|