|
[1]
|
Romanyuk, Y.E., Hagendorfer, H., Stücheli, P., et al. (2015) All Solution-Processed Chalcogenide Solar Cells—From Single Func-tional Layers towards a 13.8% Efficient CIGS Device. Advanced Functional Materials, 25, 12-27. [Google Scholar] [CrossRef]
|
|
[2]
|
Rampino, S., Bronzoni, M., Colace, L., et al. (2015) Low-Temperature Growth of Single-Crystal Cu(In,Ga)Se2 Films by Pulsed Electron Deposition Technique. Solar Energy Materials & Solar Cells, 133, 82-86. [Google Scholar] [CrossRef]
|
|
[3]
|
Bag, S., Gunawan, O., Gokmen, T., et al. (2012) Hydrazine-Processed Ge-Substituted CZTSe Solar Cells. Chemistry of Materials, 24, 4588-4593. [Google Scholar] [CrossRef]
|
|
[4]
|
甘国友, 邹屏翰, 沈韬, 等. 阳离子部分取代Cu2ZnSnS4的研究进展[J]. 材料导报, 2017, 31(15): 10-17.
|
|
[5]
|
Huang, C., Chan, Y., Liu, F., et al. (2013) Synthesis and Characterization of Multicomponent Cu2(FexZn1-x)SnS4 Nanocrystals with Tunable Band Gap and Structure. Journal of Materials Chemistry A, 1, 5402-5407. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, L., Deng, H., Cui, J., et al. (2015) Composition Dependence of the Structure and optical Properties of Cu 2MnxZn1−xSnS4 Thin Films. Journal of Alloys & Compounds, 627, 388-392.
|
|
[7]
|
Fu, J., Tian, Q., Zhou, Z.J., et al. (2016) Improving the Performance of Solution-Processed Cu2ZnSn(S,Se)4 Photovoltaic Materials by Cd2+ Substitution. Chemis-try of Materials, 28. [Google Scholar] [CrossRef]
|
|
[8]
|
Miskin, C.K., Yang, W.C., Hages, C.J., et al. (2015) 9.0% Efficient Cu2ZnSn(S,Se)4 Solar Cells from Selenized Nanoparticle Inks. Progress in Photovoltaics Research & Applications, 23, 654-659. [Google Scholar] [CrossRef]
|
|
[9]
|
Shin, B., Gunawan, O., Zhu, Y., et al. (2013) Thin Film Solar Cell with 8.4% Power Conversion Efficiency Using an Earth-Abundant Cu2ZnSnS4 Absorber. Progress in Photovoltaics Research & Applications, 21, 72-76. [Google Scholar] [CrossRef]
|
|
[10]
|
Kim, I., Kim, K., Oh, Y., et al. (2014) Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film So-lar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals. Chemistry of Materials, 26, 3957-3965. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhao, W., Wang, G., Tian, Q., et al. (2015) Solution-Processed Cu2CdSn(S,Se)4 Thin Film Solar Cells. Solar Energy Materials & Solar Cells, 133, 15-20. [Google Scholar] [CrossRef]
|
|
[12]
|
Yuan, Z.-K., Chen, S., Xiang, H., et al. (2015) Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu- and Ag-Based Kesterite Compounds. Advanced Functional Materials, 25, 6733-6743. [Google Scholar] [CrossRef]
|
|
[13]
|
Chagarov, E., Sardashti, K., Kummel, A.C., et al. (2016) Ag2ZnSn(S,Se)4: A Highly Promising Absorber for Thin Film Photovoltaics. The Journal of Chemical Physics, 144, 104704. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
黄丹, 戴豪, 谢政专, 等. 替代元素对光催化半导体Cu2ZnSnS4能带结构优化的第一性原理研究[J]. 广西科学, 2014(3): 220-225.
|
|
[15]
|
黄丹, 鞠志萍, 李长生, 等. 光催化半导体Ag2ZnSnS4的第一性原理研究[J]. 物理学报, 2014, 63(24): 289-294.
|
|
[16]
|
Jing, T., Dai, Y., Ma, X., et al. (2015) Electronic Structure and Photocatalytic Wa-ter-Splitting Properties of Ag2ZnSn(S1-xSex)4. The Journal of Physical Chemistry C, 119, 27900-27908. [Google Scholar] [CrossRef]
|
|
[17]
|
Gong, W., Tabata, T., Takei, K., et al. (2015) Crystallographic and Optical Proper-ties of (Cu,Ag)2ZnSnS4 and (Cu,Ag)2ZnSnSe4 Solid Solutions. Physica Status Solidi (C), 12, 700-703. [Google Scholar] [CrossRef]
|
|
[18]
|
Chen, X.-Y., Wang, J.-L., Zhou, W.-H., et al. (2016) Rational Synthesis of (Cu1−xAgx)2ZnSnS4 Nanocrystals with Low Defect and Tuning Band Gap. Materials Letters, 181, 317-320. [Google Scholar] [CrossRef]
|
|
[19]
|
Wei, S.-Y., Cai, C.-H., et al. (2015) The Effect of Ag Incorporation on the Phase Stability, Crystallinity and Band Structure on the (Cu,Ag)2ZnSn(S,Se)4 Kesterite Solar Cells. Photovoltaic Specialist Conference, New Orleans, 14-19 June 2015, 1-4.
|
|
[20]
|
Chen, S., Gong, X.G. and Wei, S.-H. (2007) Band-Structure Anomalies of the Chalcopyrite Semiconductors CuGaX2 versus AgGaX2 (X = S and Se) and Their Alloys. Physical Review B, 75, Article ID: 205209. [Google Scholar] [CrossRef]
|
|
[21]
|
Li, W., Liu, X., Cui, H., et al. (2015) The Role of Ag in (Ag,Cu)2ZnSnS4 Thin Film for Solar Cell Application. Journal of Alloys and Compounds, 625, 277-283. [Google Scholar] [CrossRef]
|
|
[22]
|
Nguyen, T.H., Kawaguchi, T., Chantana, J., et al. (2018) Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4 Thin Film Derived from Spray Pyrolysis. ACS Applied Materials & Interfaces, 10, 5455-5463. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sasamura, T., Osaki, T., Kameyama, T., et al. (2012) Solution-Phase Synthesis of Stannite-Type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials. Chemistry Letters, 41, 1009-1011. [Google Scholar] [CrossRef]
|
|
[24]
|
Ma, C., Guo, H., Zhang, K., et al. (2017) Fabrication of p-Type Kesterite Ag2ZnSnS4 Thin Films with a High Hole Mobility. Materials Letters, 186, 390-393. [Google Scholar] [CrossRef]
|
|
[25]
|
Yeh, L.Y. and Cheng, K.W. (2014) Preparation of the Ag-Zn-Sn-S Quaternary Photoelectrodes using Chemical Bath Deposition for Photoe-lectrochemical Applications. Thin Solid Films, 558, 289-293. [Google Scholar] [CrossRef]
|