|
[1]
|
帅玉英, 孙怡, 吴晓花, 等. 低热量甜味剂D-阿洛酮糖的生产应用研究进展[J]. 中国食品添加剂, 2014(9): 159-163.
|
|
[2]
|
李敏湘, 王兴红. 新型低热量甜味剂——D-阿洛酮糖的研究进展[J]. 氨基酸和生物资源, 2016, 38(3): 12-15.
|
|
[3]
|
韩诗蕾, 蔡基智, 廖金华. 新型功能性甜味剂D-阿洛酮糖的合成研究现状[J]. 广东化工, 2016, 43(13): 142-143.
|
|
[4]
|
Zhang, W., Yu, S., Zhang, T., et al. (2016) Recent Advances in D-Allulose: Physiological Functionalities, Applications, and Biological Production. Trends in Food Science & Technology, 54, 127-137. [Google Scholar] [CrossRef]
|
|
[5]
|
Fukada, K., Ishii, T., Tanaka, K., et al. (2010) Crystal Structure, Solubility, and Mutarotation of the Rare Monosaccharide D-Psicose. Bulletin of the Chemical Society of Japan, 83, 1193-1197. [Google Scholar] [CrossRef]
|
|
[6]
|
Hossain, A., Yamaguchi, F., Matsuo, T., et al. (2015) Rare Sugar D-Allulose: Potential Role and Therapeutic Monitoring in Maintaining Obesity and Type 2 Diabetes Mellitus. Pharmacology & Therapeutics, 155, 49-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shintani, T., Yamada, T., Hayashi, N., et al. (2017) Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats. Journal of Agricultural and Food Chemistry, 65, 2888-2894. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Han, Y., Kwon, E.Y., Yu, M., et al. (2018) A Preliminary Study for Evalu-ating the Dose-Dependent Effect of d-Allulose for Fat Mass Reduction in Adult Humans: A Randomized, Double-Blind, Place-bo-Controlled Trial. Nutrients, 10, 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kim, S.E., Kim, S.J., Kim, H.J., et al. (2017) D-Psicose, a Sugar Substitute, Suppresses Body Fat Deposition by Altering Networks of Inflammatory Response and Lipid Metabolism in C57BL/6J-ob/ob Mice. Journal of Functional Foods, 28, 265-274. [Google Scholar] [CrossRef]
|
|
[10]
|
Mu, W., Zhang, W., Feng, Y., et al. (2012) Recent Advances on Applications and Biotechnological Production of D-Psicose. Applied Microbiology and Biotechnology, 94, 1461-1467. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zeng, Y., Zhang, X., Guan, Y., et al. (2012) Enzymatic Hydrolysates from Tuna Backbone and the Subsequent Maillard Reaction with Different Ketohexoses. International Journal of Food Science & Technology, 47, 1293-1301. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, W., Zhang, T., Jiang, B., et al. (2017) Enzymatic Ap-proaches to Rare Sugar Production. Biotechnology Advances, 35, 267-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hossain, A., Yamaguchi, F., Hirose, K., et al. (2015) Rare Sugar D-Psicose Prevents Progression and Development of Diabetes in T2DM Model Otsuka Long-Evans Tokushima Fatty Rats. Drug Design, Development and Therapy, 9, 525. [Google Scholar] [CrossRef]
|
|
[14]
|
Orazov, M. and Davis, M.E. (2015) Tandem Catalysis for the Production of Alkyl Lactates from Ketohexoses at Moderate Temperatures. Proceedings of the National Academy of Sciences of the United States of America, 112, 11777. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Doner, L.W. (1979) Isomerization of d-Fructose by Base: Liq-uid-Chromatographic Evaluation and the Isolation of d-Psicose. Carbohydrate Research, 70, 209-216. [Google Scholar] [CrossRef]
|
|
[16]
|
Izumori, K. (2002) Bioproduction Strategies for Rare Hexose Sugars. Naturwissenschaften, 89, 120-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kim, N.H., Kim, H.J., Kang, D.I., et al. (2008) Conversion Shift of D-Fructose to D-Psicose for Enzyme-Catalyzed Epimerization by Addition of Borate. Applied and Environmental Microbiology, 74, 3008-3013. [Google Scholar] [CrossRef]
|
|
[18]
|
Lim, B.C., Kim, H.J. and Oh, D.K. (2009) A Stable Immobilized D-Psicose 3-Epimerase for the Production of D-Psicose in the Presence of Borate. Process Biochemistry, 44, 822-828. [Google Scholar] [CrossRef]
|
|
[19]
|
Song, Y., Nguyen, Q.A., Wi, S.G., et al. (2017) Strategy for Dual Pro-duction of Bioethanol and d-Psicose as Value-Added Products from Cruciferous Vegetable Residue. Bioresource Technology, 223, 34-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bolt, H.M., Duydu, Y., Başaran, N., et al. (2017) Boron and Its Compounds: Current Biological Research Activities. Archives of Toxicology, 91, 2719-2722. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yoshihara, A., Kozakai, T., Shintani, T., et al. (2017) Purification and Characterization of d-allulose 3-epimerase Derived from Arthrobacter globiformis M30, a GRAS Microorganism. Journal of Bioscience and Bioengineering, 123, 170-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Patel, S.N., Singh, V., Sharma, M., et al. (2018) Development of a Thermo-Stable and Recyclable Magnetic Nanobiocatalyst for Bioprocessing of Fruit Processing Residues and D-allulose Synthesis. Bioresource Technology, 247, 633-639. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
李秋喜, 林春芳, 沐万孟, 等. 海藻酸钠固定细胞产D-阿洛酮糖的研究[J]. 食品工业科技, 2015(7): 172-176.
|
|
[24]
|
李秋喜. D-阿洛酮糖3-差向异构酶的固定化技术研究[D]: [硕士学位论文]. 无锡: 江南大学食品系, 2014.
|
|
[25]
|
李毅. 酿酒酵母孢子固定化酶催化D-葡萄糖合成D-阿洛酮糖的研究[D]: [硕士学位论文]. 无锡: 江南大学生物工程系, 2015.
|
|
[26]
|
Patel, S.N., Sharma, M., Lata, K., et al. (2016) Improved Operational Stability of d-psicose 3-epimerase by a Novel Protein Engineering Strategy, and d-psicose Production from Fruit and Vegetable Residues. Bioresource Technology, 216, 121-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Choi, J.G., Ju, Y.H., Yeom, S.J., et al. (2011) Improvement in the Thermostability of D-psicose 3-epimerase from Agrobacterium tumefaciens by Random and Site-Directed Mutagenesis. Applied and Environmental Microbiology, 77, 7316-7320. [Google Scholar] [CrossRef]
|
|
[28]
|
Park, C.S., Park, C.S., Shin, K.C., et al. (2016) Production of D-psicose from D-fructose by Whole Recombinant Cells with High-Level Expression of D-psicose 3-epimerase from Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 121, 186-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
汪马燕, 李子杰, 高晓冬. L-鼠李树胶糖-1-磷酸醛缩酶立体选择性的半理性改造合成D-阿洛酮糖[J]. 食品与发酵工业, 1-14.
|
|
[30]
|
Kim, H.J., Hyun, E.K., Kim, Y.S., et al. (2006) Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase That Converts D-fructose to D-psicose. Applied and Environmental Microbiology, 72, 981-985. [Google Scholar] [CrossRef]
|
|
[31]
|
Li, C., Lin, J., Guo, Q., et al. (2017) D-Psicose 3-Epimerase Secretory Overexpression, Immobilization, and d-psicose Biotransformation, Separation and Crystallization. Journal of Chemical Tech-nology and Biotechnology, 93, 2.
|
|
[32]
|
Bilik, V. and Tihlarik, K. (1973) Reaction of Saccharides Catalyzed by Molybdate Ions. IX. Epimerization of Ketohexoses. Chemicke Zvesti, 28, 106-109.
|
|
[33]
|
Li, C., Zhang, C., Lin, J., et al. (2017) Enzymatic Fructose Removal from D-psicose Bioproduction Model Solution and the System Modeling and Simulation. Journal of Chemical Tech-nology and Biotechnology, 93, 1249-1260.
|
|
[34]
|
Chen, X., Wang, W., Xu, J., et al. (2017) Production of d-psicose from d-glucose by Co-Expression of d-psicose 3-epimerase and Xylose Isomerase. Enzyme and Microbial Technology, 105, 18-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
何伟伟. D-阿洛酮糖3-差向异构酶在枯草芽孢杆菌中的高效表达及应用研究[D]: [博士学位论文]. 无锡: 江南大学食品系, 2017.
|
|
[36]
|
Park, C.S., Kim, T., Hong, S.H., et al. (2016) D-Allulose Production from D-Fructose by Permeabilized Recombinant Cells of Corynebacterium glutamicum Cells Expressing D-Allulose 3-Epimerase Flavonifractor plautii. PLoS ONE, 11, e0160044.
|
|
[37]
|
Yang, J., Zhu, Y., Li, J., et al. (2015) Biosynthesis of Rare Ketoses through Constructing a Recombination Pathway in an Engineered Corynebacterium glutamicum. Biotechnology and Bioengineering, 112, 168-180.
|
|
[38]
|
吴晓茹. 利用磷酸二羟基丙酮依赖型醛缩酶和甘油激酶合成稀有糖[D]: [硕士学位论文]. 无锡: 江南大学生物工程系, 2016.
|