|
[1]
|
Suh, M.P., Park, H.J., Prasad, T.K. and Lim, D.-W. (2012) Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 782-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sumida, K., Rogow, D.L., Mason, J.A., et al. (2012) Carbon Dioxide Capture in Metal-Organic Frameworks. Chemical Reviews, 112, 724-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P. and Hupp, J.T. (2012) Metal-Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112, 1105-1125. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Horcajada, P., Gref, R., Baati, T., et al. (2012) Metal-Organic Frameworks in Biomedicine. Chemical Reviews, 112, 1232-1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lee, J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyena, S.B.T. and Hupp, J.T. (2009) Metal-Organic Framework Materials as Catalysts. Chemical Society Reviews, 38, 1450-1459. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tranchemontagne, D.J., Mendoza-Cortés, J.L., O’Keeffe, M. and Yaghi, O.M. (2009) Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chemical Society Reviews, 38, 1257-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Stephen, S.Y.C., Samuel, M.F.L., Jonathan, P.H.C., Orpen, A.G. and Williams, I.D. (1999) A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Serre, C., Millange, F., Thouvenot, C., et al. (2002) Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x•(H2O)y. Journal of the American Chemical Society, 124, 13519-13526. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F. and Férey, G. (2006) Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie International Edition, 45, 5974-5978. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Férey, G., Mellot-Draznieks, C., Serre, C., et al. (2005) A Chromium Tereph-thalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040-2042. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Huang, X.C., Lin, Y.Y., Zhang, J.P., et al. (2006) Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks: Zinc (II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition, 45, 1557-1559. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Cavka, J.H., Jakobsen, S., Olsbye, U., et al. (2008) A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130, 13850-13851. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhu, Q.L. and Xu, Q. (2014) Metal-Organic Framework Composites. Chemical Society Reviews, 43, 5468-5512. [Google Scholar] [CrossRef]
|
|
[14]
|
Dhakshinamoorthy, A. and Garcia, H. (2012) Catalysis by Metal Nanoparticles Em-bedded on Metal-Organic Frameworks. Chemical Society Reviews, 41, 5262-5284. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lu, G., Li, S.Z., Guo, Z., et al. (2012) Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle En-capsulation. Nature Chemistry, 4, 310-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ameloot, R., Roeffaers, M.B.J., Cremer, G.D., et al. (2011) Metal-Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures. Advanced Materials, 23, 1788-1791. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hermes, S., Schröter, M.K., Schmid, R., et al. (2005) Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44, 6237-6241. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tsuruoka, T., Kawasaki, H., Nawafune, H., et al. (2011) Controlled Self-Assembly of Metal-Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. ACS Applied Materials & Interfaces, 3, 3788-3791. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rioux, R.M., Song, H., Hoefelmeyer, J.D., et al. (2005) High-Surface-Area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica. The Journal of Physical Chemistry B, 109, 2192-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ricco, R., Malfatti, L., Takahashi, M., et al. (2013) Applications of Magnetic Metal-Organic Framework Composites. Journal of Materials Chemistry A, 1, 13033-13045. [Google Scholar] [CrossRef]
|
|
[21]
|
Bagheri, A., Taghizadeh, M., Behbahan,i M., et al. (2012) Synthesis and Characterization of Magnetic Metal-Organic Framework (MOF) as a Novel Sorbent, and Its Optimization by Experimental Design Methodology for Determination of Palladium in Environmental Samples. Talanta, 99, 132-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, T., Zhang, X., Yan, X., et al. (2013) Synthesis of Fe3O4@ZIF-8 Magnetic Core-Shell Microspheres and Their Potential Application in a Capillary Microreactor. Chemical Engineering Journal, 228, 398-404. [Google Scholar] [CrossRef]
|
|
[23]
|
Lohe, M.R., Gedrich, K., Freudenberg, T., et al. (2011) Heating and Separation Using Nanomagnet-Functionalized Metal-Organic Frameworks. Chemical Communications, 47, 3075-3077. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Park, J., An, K., Hwang, Y., et al. (2004) Ultra-Scale Synthesis of Monodisperse Nanocrystals. Nature Materials, 3, 891-895. [Google Scholar] [CrossRef] [PubMed]
|