|
[1]
|
Green, M.B. and Upton, J. (1994) Constructed Reed Beds: A Cost-Effective Way to Polish Wastewater Effluents for Small Commu-nities. Water Environment Research, 66, 188-192. [Google Scholar] [CrossRef]
|
|
[2]
|
Fennessy, M.S., Cronk, J.K. and Mitsch, W.J. (1994) Macrophyte Productivity and Community Development in Created Freshwater Wetlands under Experimental Hydrological Conditions. Ecological Engineering, 3, 469-484. [Google Scholar] [CrossRef]
|
|
[3]
|
Armstrong, J., Armstrong, W. and Putten, W.H. (1996) Phragmites Die-Back: Bud and Root Death, Blockages within the Aeration and Vascular Systems and the Possible Role of Phytotoxins. New Phytologist, 133, 399-414. [Google Scholar] [CrossRef]
|
|
[4]
|
Lu, J., Wang, H., Pan, M., et al. (2012) Using Sediment Seed Banks and Historical Vegetation Change Data to Develop Restoration Criteria for a Eutrophic Lake in China. Ecological Engineering, 39, 95-103. [Google Scholar] [CrossRef]
|
|
[5]
|
Lotze, H.K., Lenihan, H.S., Bourque, B.J., et al. (2006) Depletion, Degrada-tion, and Recovery Potential of Estuaries and Coastal Seas. Science, 312, 1806-1809. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, Z.Y., Wu, H., Liu, S.M., et al. (2017) Hypoxia off the Changjiang (Yangtze River) Estuary and in the Adjacent East China Sea: Quantitative Approaches to Estimating the Tidal Impact and Nutrient Regeneration. Marine Pollution Bulletin, 125, 103-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Govers, L.L., de Brouwer, J.H.F., Suykerbuyk, W., et al. (2014) Toxic Effects of Increased Sediment Nutrient and Organic Matter Loading on the Seagrass Zostera noltii. Aquatic Toxicology, 155, 253-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, J., Yan, W., Chen, N., et al. (2015) Modeled Long-Term Changes of DIN:DIP Ratio in the Changjiang River in Relation to Chl-α and DO Concentrations in Adjacent Estuary. Estuarine, Coastal and Shelf Science, 166, 153-160. [Google Scholar] [CrossRef]
|
|
[9]
|
Tong, Y., Bu, X., Chen, J., et al. (2017) Estimation of Nutrient Discharge from the Yangtze River to the East China Sea and the Identification of Nutrient Sources. Journal of Hazardous Materials, 321, 728-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gigante, D., Landucci, F. and Venanzoni, R. (2013) The Reed Die-Back Syndrome and Its Implications for Floristic and Vegetational Traits of Phragmitetum australis. Plant Sociology, 50, 3-16.
|
|
[11]
|
Tylová, E., Steinbachová, L., Soukup, A., et al. (2013) Pore Water N:P and : Alter the Response of Phragmites australis and Glyceria Maxima to Extreme Nutrient Regimes. Hydrobiologia, 700, 141-155. [Google Scholar] [CrossRef]
|
|
[12]
|
Van der Heide, T., Smolders, A., Rijkens, B., Van Nes, E.H., Van Katwijk, M.M. and Roelofs, J. (2008) Toxicity of Reduced Nitrogen in Eelgrass (Zostera marina) is Highly Dependent on Shoot Density and pH. Oecologia, 158, 411-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, L., Wang, S., Jiao, L., et al. (2013) Physiological Response of a Submerged Plant (Myriophyllum spicatum) to Different NH4Cl Concentrations in Sediments. Ecological Engineering, 58, 91-98. [Google Scholar] [CrossRef]
|
|
[14]
|
Apudo, A.A., Cao, Y., Wakibia, J., et al. (2016) Physiological Plastic Re-sponses to Acute -N Toxicity in Myriophyllum spicatum L. Cultured in High and Low Nutrient Conditions. Environmental and Experimental Botany, 130, 79-85. [Google Scholar] [CrossRef]
|
|
[15]
|
Xing, W., Wu, H.P., Hao, B.B., et al. (2013) Stoichiometric Characteristics and Responses of Submerged Macrophytes to Eutrophication in Lakes along the Middle and Lower Reaches of the Yangtze River. Ecological Engineering, 54, 16-21. [Google Scholar] [CrossRef]
|
|
[16]
|
Fujita, Y., Venterink, H.O., Van Bodegom, P.M., et al. (2014) Low In-vestment in Sexual Reproduction Threatens Plants Adapted to Phosphorus Limitation. Nature, 505, 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Romero, J.A., Brix, H. and Comin, F.A. (1999) Interactive Effects of N and P on Growth, Nutrient Allocation and NH4 Uptake Kinetics by Phragmites australis. Aquatic Botany, 64, 369-380. [Google Scholar] [CrossRef]
|
|
[18]
|
Brun, F.G., Hernández, I., Vergara, J.J., et al. (2002) Assessing the Tox-icity of Ammonium Pulses to the Survival and Growth of Zostera noltii. Marine Ecology Progress Series, 225, 177-187. [Google Scholar] [CrossRef]
|
|
[19]
|
Nixon, S.W. (1995) Coastal Marine Eutrophication: A Definition, Social Causes, and Future Concerns. Ophelia, 41, 199-219. [Google Scholar] [CrossRef]
|
|
[20]
|
Holmer, M. and Bondgaard, E.J. (2001) Photosynthetic and Growth Response of Eelgrass to Low Oxygen and High Sulfide Concentrations during Hypoxic Events. Aquatic Botany, 70, 29-38. [Google Scholar] [CrossRef]
|
|
[21]
|
Carstensen, J., Andersen, J.H., Gustafsson, B.G., et al. (2014) Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences, 111, 5628-5633.
|
|
[22]
|
Morell, J.M. and Corredor, J.E. (2001) Photomineralization of Fluorescent Dissolved Organic Matter in the Orinoco River Plume: Estimation of Ammonium Release. Journal of Geophysical Research: Oceans, 106, 16807-16813. [Google Scholar] [CrossRef]
|
|
[23]
|
Liu, S.M., Qi, X.H., Li, X., et al. (2016) Nutrient Dynamics from the Changjiang (Yangtze River) Estuary to the East China Sea. Journal of Marine Systems, 154, 15-27. [Google Scholar] [CrossRef]
|
|
[24]
|
Xu, H. and Jiang, H. (2013) UV-Induced Photochemical Heterogeneity of Dissolved and Attached Organic Matter Associated with Cyanobacterial Blooms in a Eutrophic Freshwater Lake. Water Research, 47, 6506-6515. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
秦伯强, 高光, 朱广伟, 张运林, 宋玉芝, 汤祥明, 许海, 邓建明. 湖泊富营养化及其生态系统响应[J]. 科学通报, 2013, 58(10): 855-864.
|
|
[26]
|
冯伟莹, 朱元荣, 吴丰昌, 等. 太湖水体溶解性有机质荧光特征及其来源解析[J]. 环境科学学报, 2016, 36(2): 475-482.
|
|
[27]
|
陈国玲, 苏怀, 董铭, 兰丹. 滇池流域沉水植物衰退和消失驱动因子的研究[J]. 环境科学与技术, 2018, 41(2): 13-19.
|
|
[28]
|
王爱丽, 孙旭, 陈乾坤, 杨柳燕. 污水处理厂尾水中氨氮对穗花狐尾藻生长的影响[J]. 生态学杂志, 2015, 34(5): 1367-1372.
|
|
[29]
|
Jin, X., Wang, S., Pang, Y., et al. (2006) Phosphorus Fractions and the Effect of pH on the Phosphorus Release of the Sediments from Different Trophic Areas in Taihu Lake, China. Environmental Pollution, 139, 288-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
吴婷婷, 刘国锋, 韩士群, 周庆, 唐婉莹. 蓝藻水华聚集对水葫芦生理生态的影响[J]. 环境科学, 2015, 36(1): 114-120.
|
|
[31]
|
张华, 等. 渤海底层低氧区的空间特征与形成机制[J]. 科学通报, 2016, 61(14): 1612-1620.
|
|
[32]
|
刘永, 郭怀成, 周丰, 王真, 黄凯. 湖泊水位变动对水生植被的影响机理及其调控方法[J]. 生态学报, 2006(9): 3117-3126.
|
|
[33]
|
王琦, 高晓奇, 肖能文, 刘高慧, 吕凤春, 韩煜, 史娜娜, 全占军. 滇池沉水植物的分布格局及其水环境影响因子识别[J]. 湖泊科学, 2018, 30(1): 157-170.
|
|
[34]
|
Hautier, Y., Niklaus, P.A. and Hector, A. (2009) Competition for Light Causes Plant Biodiversity Loss after Eutrophication. Science, 324, 636-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wetzel, P.R. and Agvander, V. (1998) Effects of Nutrient and Soil Moisture on Competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology, 138, 179-190. [Google Scholar] [CrossRef]
|
|
[36]
|
武小钢, 杨秀云, 边俊, 朱烨, 曹晔. 长治城市湿地公园滨岸区植物群落特征及其与土壤环境的关系[J]. 生态学报, 2015, 35(7): 2048-2056.
|
|
[37]
|
周林飞, 赵言稳, 芦晓峰. 不同生活型植物腐解过程对人工湿地水质的影响研究[J]. 生态环境学报, 2016(4): 664-670.
|
|
[38]
|
Sand-Jensen, K. and Møller, C.L. (2014) Reduced Root Anchorage of Freshwater Plants in Sandy Sediments Enriched with Fine Organic Matter. Freshwater Biology, 59, 427-437. [Google Scholar] [CrossRef]
|
|
[39]
|
Darby, F.A. and Turner, R.E. (2008) Effects of Eutrophication on Salt Marsh Root and Rhizome Biomass Accumulation. Marine Ecology Progress Series, 363, 63-70. [Google Scholar] [CrossRef]
|
|
[40]
|
Mao, R., Chen, H. and Li, S. (2017) Phosphorus Availability as a Primary Control of Dissolved Organic Carbon Biodegradation in the Tributaries of the Yangtze River in the Three Gorges Reservoir Region. Science of the Total Environment, 574, 1472-1476. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ryser, P., Gill, H.K. and Byrne, C.J. (2011) Constraints of Root Response to Waterlogging in Alisma triviale. Plant and Soil, 343, 247-260. [Google Scholar] [CrossRef]
|
|
[42]
|
Striker, G.G., Insausti, P., Grimoldi, A.A., et al. (2007) Trade-Off between Root Porosity and Mechanical Strength in Species with Different Types of Aerenchyma. Plant, Cell & Environment, 30, 580-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Struyf, E. and Conley, D.J. (2012) Emerging Understanding of the Ecosystem Silica Filter. Biogeochemistry, 107, 9-18. [Google Scholar] [CrossRef]
|
|
[44]
|
Schoelynck, J. and Struyf, E. (2016) Silicon in Aquatic Vegetation. Functional Ecology, 30, 1323-1330. [Google Scholar] [CrossRef]
|
|
[45]
|
Emsens, W.J., Schoelynck, J., Grootjans, A.P., et al. (2016) Eutrophication Alters Si Cycling and Litter Decomposition in Wetlands. Biogeochemistry, 130, 289-299. [Google Scholar] [CrossRef]
|
|
[46]
|
Hodson, M.J., White, P.J., Mead, A., et al. (2005) Phylogenetic Variation in the Silicon Composition of Plants. Annals of Botany, 96, 1027-1046. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Schoelynck, J., Bal, K., Backx, H., et al. (2010) Silica Uptake in Aquatic and Wetland Macrophytes: A Strategic Choice between Silica, Lignin and Cellulose? New Phytologist, 186, 385-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yang, Z., Xie, T. and Liu, Q. (2014) Physiological Responses of Phragmites australis to the Combined Effects of Water and Salinity Stress. Ecohydrology, 7, 420-426. [Google Scholar] [CrossRef]
|
|
[49]
|
史玉炜, 王燕凌, 李文兵, 高述民, 李霞. 水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J]. 新疆农业大学学报, 2007(2): 5-8.
|
|
[50]
|
易文利, 王圣瑞, 杨苏文, 金相灿, 王国栋. 有机质腐解对穗花狐尾藻生长及生理的影响[J]. 中国环境科学, 2011, 31(10): 1718-1724.
|
|
[51]
|
潘琦, 宋祥甫, 邹国燕, 叶春, 付子轼, 刘福兴, 范洁群. 不同温度对沉水植物保护酶活性的影响[J]. 生态环境学报, 2009, 18(5): 1881-1886.
|