|
[1]
|
Zhao, W., Zheng, X.L. and Zhao, S.P. (2015) Exosome and Its Roles in Cardiovascular Diseases. Heart Failure Reviews, 20, 337-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Williams, A.R. and Hare, J.M. (2011) Mesenchymal Stem Cells: Biology, Pathophysiology, Translational Findings, and Therapeutic Implications for Cardiac Disease. Circulation Research, 109, 923-940. [Google Scholar] [CrossRef]
|
|
[3]
|
Jhund, P.S. and McMurray, J.J. (2008) Heart Failure after Acute Myocardial Infarction: A Lost Battle in the War on Heart Failure? Circulation, 118, 2019-2021. [Google Scholar] [CrossRef]
|
|
[4]
|
Ibrahim, A.G.E., Cheng, K. and Marban, E. (2014) Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Reports, 2, 606-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yellon, D.M. and Davidson, S.M. (2014) Exosomes: Nanoparticles Involved in Cardioprotection? Circulation Research, 114, 325-332. [Google Scholar] [CrossRef]
|
|
[6]
|
Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nana-Sinkam, S.P., Acunzo, M., Croce, C.M. and Wang, K. (2017) Extracellular Vesicle Biology in the Pathogenesis of Lung Disease. American Journal of Respiratory and Critical Care Medicine, 196, 1510-1518. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhou, L., Lv, T., Zhang, Q., Zhu, Q., Zhan, P., Zhu, S., Zhang, J. and Song, Y. (2017) The Biology, Function and Clinical Implications of Exosomes in Lung Cancer. Cancer Letters, 407, 84-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
De Toro, J., Herschlik, L., Waldner, C. and Mongini, C. (2015) Emerging Roles of Exosomes in Normal and Pathological Conditions: New Insights for Diagnosis and Therapeutic Applications. Frontiers in Immunology, 6, 203. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mathivanan, S., Ji, H. and Simpson, R.J. (2010) Exosomes: Extracellular Organelles Important in Intercellular Communication. Journal of Proteomics, 73, 1907-1920. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dragovic, R.A., Gardiner, C., Brooks, A.S., Tannetta, D.S., Ferguson, D.J.P., Hole, P., Carr, B., Redman, C.W.G., Harris, A.L., Dobson, P.J., Harrison, P. and Sargent, I.L. (2011) Sizing and Phenotyping of Cellular Vesicles Using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 780-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lasser, C., Alikhani, V.S., Ekstrom, K., Eldh, M., Paredes, P.T., Bossios, A., Sjostrand, M., Gabrielsson, S., Lotvall, J. and Valadi, H. (2011) Human Saliva, Plasma and Breast Milk Exosomes Contain RNA: Uptake by Macrophages. Journal of Translational Medicine, 9, 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, B., Yin, Y., Lai, R.C., Tan, S.S., Choo, A.B. and Lim, S.K. (2014) Mesenchymal Stem Cells Secrete Immunologically Active Exosomes. Stem Cells and Development, 23, 1233-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., Zhang, B., Wang, M., Mao, F., Yan, Y., Gao, S., Gu, H., Zhu, W. and Qian, H. (2013) Exosomes Released by Human Umbilical Cord Mesenchymal Stem Cells Protect against Cisplatin-Induced Renal Oxidative Stress and Apoptosis in Vivo and in Vitro. Stem Cell Research & Therapy, 4, 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kogure, T., Lin, W.L., Yan, I.K., Braconi, C. and Patel, T. (2011) Intercellular Nanovesicle-Mediated MicroRNA Transfer: A Mechanism of Environmental Modulation of Hepatocellular Cancer Cell Growth. Hepatology, 54, 1237-1248. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shin, S.J., Smith, J.A., Rezniczek, G.A., Pan, S., Chen, R., Brentnall, T.A., Wiche, G. and Kelly, K.A. (2013) Unexpected Gain of Function for the Scaffolding Protein Plectin Due to Mislocalization in Pancreatic Cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 19414-19419. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Llorente, A., Skotland, T., Sylvanne, T., Kauhanen, D., Rog, T., Orlowski, A., Vattulainen, I., Ekroos, K. and Sandvig, K. (2013) Molecular Lipidomics of Exosomes Released by PC-3 Prostate Cancer Cells. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1831, 1302-1309. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, H.G. (2016) Exosomes: A Novel Pathway of Local and Distant Intercellular Communication That Facilitates the Growth and Metastasis of Neoplastic Lesions. The American Journal of Pathology, 186, 1710-1710.
|
|
[19]
|
Pant, S., Hilton, H. and Burczynski, M.E. (2012) The Multifaceted Exosome: Biogenesis, Role in Normal and Aberrant Cellular Function, and Frontiers for Pharmacological and Biomarker Opportunities. Biochemical Pharmacology, 83, 1484-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Colombo, M., Raposo, G. and Thery, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K.M., Millay, M., Ito, A., Liu, T., Kamide, C., Agrawal, H., Perlman, H., Qin, G.J., Kishore, R. and Losordo, D.W. (2011) Exosomes from Human CD34(+) Stem Cells Mediate Their Proangiogenic Paracrine Activity. Circulation Research, 109, 724-U735. [Google Scholar] [CrossRef]
|
|
[22]
|
Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S.K., Krishnamurthy, P., Mackie, A.R., Vaughan, E., Garikipati, V.N.S., Benedict, C., Ramirez, V., Lambers, E., Ito, A., Gao, E., Misener, S., Luongo, T., Elrod, J., Qin, G.J., Houser, S.R., Koch, W.J. and Kishore, R. (2015) Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 117, 52-64.
|
|
[23]
|
Garcia, N.A., Ontoria-Oviedo, I., Gonzalez-King, H., Diez-Juan, A. and Sepulveda, P. (2015) Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells. PLoS ONE, 10, e0138849. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, X.C., Chen, C.Y., Wei, L.M., Li, Q., Niu, X., Xu, Y.J., Wang, Y. and Zhao, J.G. (2016) Exosomes Derived from Endothelial Progenitor Cells Attenuate Vascular Repair and Accelerate Reendothelialization by Enhancing Endothelial Function. Cytotherapy, 18, 253-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Barile, L., Lionetti, V., Cervio, E., Matteucci, M., Gherghiceanu, M., Popescu, L.M., Torre, T., Siclari, F., Moccetti, T. and Vassalli, G. (2014) Extracellular Vesicles from Human Cardiac Progenitor Cells Inhibit Cardiomyocyte Apoptosis and Improve Cardiac Function after Myocardial Infarction. Cardiovascular Research, 103, 530-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Taylor, D.D. and Shah, S. (2015) Methods of Isolating Extracellular Vesicles Impact Down-Stream Analyses of Their Cargoes. Methods, 87, 3-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Nozaki, T., Sugiyama, S., Koga, H., Sugamura, K., Ohba, K., Matsuzawa, Y., Sumida, H., Matsui, K., Jinnouchi, H. and Ogawa, H. (2009) Significance of a Multiple Biomarkers Strategy Including Endothelial Dysfunction to Improve Risk Stratification for Cardiovascular Events in Patients at High Risk for Coronary Heart Disease. Journal of the American College of Cardiology, 54, 601-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Amabile, N., Cheng, S., Renard, J.M., Larson, M.G., Ghorbani, A., McCabe, E., Griffin, G., Guerin, C., Ho, J.E., Shaw, S.Y., Cohen, K.S., Vasan, R.S., Tedgui, A., Boulanger, C.M. and Wang, T.J. (2014) Association of Circulating Endothelial Microparticles with Cardiometabolic Risk Factors in the Framingham Heart Study. European Heart Journal, 35, 2972-2979. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Montecalvo, A., Larregina, A.T., Shufesky, W.J., Stolz, D.B., Sullivan, M.L., Karlsson, J.M., Baty, C.J., Gibson, G.A., Erdos, G., Wang, Z., Milosevic, J., Tkacheva, O.A., Divito, S.J., Jordan, R., Lyons-Weiler, J., Watkins, S.C. and Morelli, A.E. (2012) Mechanism of Transfer of Functional microRNAs between Mouse Dendritic Cells via Exosomes. Blood, 119, 756-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Stoorvogel, W. (2012) Functional Transfer of microRNA by Exosomes. Blood, 119, 646-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sahoo, S. and Losordo, D.W. (2014) Exosomes and Cardiac Repair after Myocardial Infarction. Circulation Research, 114, 333-344. [Google Scholar] [CrossRef]
|
|
[32]
|
Triggle, C.R., Samuel, S.M., Ravishankar, S., Marei, I., Arunachalam, G. and Ding, H. (2012) The Endothelium: Influencing Vascular Smooth Muscle in Many Ways. Canadian Journal of Physiology and Pharmacology, 90, 713-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Paik, D.T., Rai, M., Ryzhov, S., Sanders, L.N., Aisagbonhi, O., Funke, M.J., Feoktistov, I. and Hatzopoulos, A.K. (2015) Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circulation Research, 117, 804-816. [Google Scholar] [CrossRef]
|
|
[34]
|
Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A.J., Zeiher, A.M., Scheffer, M.P., Frangakis, A.S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R.A. and Dimmeler, S. (2012) Atheroprotective Communication between Endothelial Cells and Smooth Muscle Cells through miRNAs. Nature Cell Biology, 14, 249-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Oerlemans, M.I., Mosterd, A., Dekker, M.S., de Very, E.A., van Mil, A., Pasterkamp, G., Doevendans, P.A., Hoes, A.W. and Sluijter, J.P. (2012) Early Assessment of Acute Coronary Syndromes in the Emergency Department: The Potential Diagnostic Value of Circulating microRNAs. EMBO Molecular Medicine, 4, 1176-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., Schmitz, T., Dolf, A., Endl, E., Franklin, B.S., Sinning, J.M., Vasa-Nicotera, M., Nickenig, G. and Werner, N. (2014) MicroRNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients with Coronary Artery Disease. Journal of the American Heart Association, 3, e001249. [Google Scholar] [CrossRef]
|
|
[37]
|
Matsumoto, S., Sakata, Y., Suna, S., Nakatani, D., Usami, M., Hara, M., Kitamura, T., Hamasaki, T., Nanto, S., Kawahara, Y. and Komuro, I. (2013) Circulating p53-Responsive microRNAs Are Predictive Indicators of Heart Failure after Acute Myocardial Infarction. Circulation Research, 113, 322-326. [Google Scholar] [CrossRef]
|
|
[38]
|
Madrigal-Matute, J., Lindholt, J.S., Fernandez-Garcia, C.E., Benito-Martin, A., Burillo, E., Zalba, G., Beloqui, O., Llamas-Granda, P., Ortiz, A., Egido, J., Blanco-Colio, L.M. and Martin-Ventura, J.L. (2014) Galectin-3, a Biomarker Linking Oxidative Stress and Inflammation with the Clinical Outcomes of Patients with Atherothrombosis. Journal of the American Heart Association, 3, e000785.
|
|
[39]
|
Nouraee, N. and Mowla, S.J. (2015) miRNA Therapeutics in Cardiovascular Diseases: Promises and Problems. Frontiers in Genetics, 6, 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
O’Loughlin, A.J., Woffindale, C.A. and Wood, M.J. (2012) Exosomes and the Emerging Field of Exosome-Based Gene Therapy. Current Gene Therapy, 12, 262-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., Pasterkamp, G., de Kleijn, D.P. and Lim, S.K. (2010) Exosome Secreted by MSC Reduces Myocardial Ischemia/Reperfusion Injury. Stem Cell Research, 4, 214-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Martinez, M.C., Larbret, F., Zobairi, F., Coulombe, J., Debili, N., Vainchenker, W., Ruat, M. and Freyssinet, J.M. (2006) Transfer of Differentiation Signal by Membrane Microvesicles Harboring Hedgehog Morphogens. Blood, 108, 3012-3020. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, Y., Sun, X., Cao, W., Ma, J., Sun, L., Qian, H., Zhu, W. and Xu, W. (2015) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells International, 2015, Article ID: 761643. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., Ashraf, M. and Xu, M. (2015) Exosomes Secreted from GATA-4 Overexpressing Mesenchymal Stem Cells Serve as a Reservoir of Anti-Apoptotic microRNAs for Cardioprotection. International Journal of Cardiology, 182, 349-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., Zhu, Y., Wu, L., Pan, Z., Zhu, W., Qian, H. and Xu, W. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis through the Wnt4/Beta-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Arslan, F., Lai, R.C., Smeets, M.B., Akeroyd, L., Choo, A., Aguor, E.N., Timmers, L., van Rijen, H.V., Doevendans, P.A., Pasterkamp, G., Lim, S.K. and de Kleijn, D.P. (2013) Mesenchymal Stem Cell-Derived Exosomes Increase ATP Levels, Decrease Oxidative Stress and Activate PI3K/Akt Pathway to Enhance Myocardial Viability and Prevent Adverse Remodeling after Myocardial Ischemia/Reperfusion Injury. Stem Cell Research, 10, 301-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Fu, X., Koller, S., Abd Alla, J. and Quitterer, U. (2013) Inhibition of G-Protein-Coupled Receptor Kinase 2 (GRK2) Triggers the Growth-Promoting Mitogen-Activated Protein Kinase (MAPK) Pathway. The Journal of Biological Chemistry, 288, 7738-7755. [Google Scholar] [CrossRef]
|
|
[48]
|
Gazdhar, A., Grad, I., Tamo, L., Gugger, M., Feki, A. and Geiser, T. (2014) The Secretome of Induced Pluripotent Stem Cells Reduces Lung Fibrosis in Part by Hepatocyte Growth Factor. Stem Cell Research & Therapy, 5, 123. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., Zhang, X., Qin, G., He, S.H., Zimmerman, A., Liu, Y., Kim, I.M., Weintraub, N.L. and Tang, Y. (2015) Exosomes/Microvesicles from Induced Pluripotent Stem Cells Deliver Cardioprotective miRNAs and Prevent Cardiomyocyte Apoptosis in the Ischemic Myocardium. International Journal of Cardiology, 192, 61-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bobis-Wozowicz, S., Kmiotek, K., Sekula, M., Kedracka-Krok, S., Kamycka, E., Adamiak, M., Jankowska, U., Madetko-Talowska, A., Sarna, M., Bik-Multanowski, M., Kolcz, J., Boruczkowski, D., Madeja, Z., Dawn, B. and Zuba-Surma, E.K. (2015) Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells, 33, 2748-2761. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhou, J., Ghoroghi, S., Benito-Martin, A., Wu, H., Unachukwu, U.J., Einbond, L.S., Guariglia, S., Peinado, H. and Redenti, S. (2016) Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content. Scientific Reports, 6, Article No. 19743. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chong, J.J., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J.J., Mahoney, W.M., Van Biber, B., Cook, S.M., Palpant, N.J., Gantz, J.A., Fugate, J.A., Muskheli, V., Gough, G.M., Vogel, K.W., Astley, C.A., Hotchkiss, C.E., Baldessari, A., Pabon, L., Reinecke, H., Gill, E.A., Nelson, V., Kiem, H.P., Laflamme, M.A. and Murry, C.E. (2014) Human Embryonic-Stem-Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts. Nature, 510, 273-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., Coscia, C., Iessi, E., Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M. and Fais, S. (2009) Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells. The Journal of Biological Chemistry, 284, 34211-34222. [Google Scholar] [CrossRef]
|
|
[54]
|
Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., Yankelson, L., Aronson, D., Beyar, R. and Gepstein, L. (2007) Transplantation of Human Embryonic Stem Cell-Derived Cardiomyocytes Improves Myocardial Performance in Infarcted Rat Hearts. Journal of the American College of Cardiology, 50, 1884-1893. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., O’Sullivan, C., Collins, L., Chen, Y., Minami, E., Gill, E.A., Ueno, S., Yuan, C., Gold, J. and Murry, C.E. (2007) Cardiomyocytes Derived from Human Embryonic Stem Cells in Pro-Survival Factors Enhance Function of Infarcted Rat Hearts. Nature Biotechnology, 25, 1015-1024. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Blin, G., Nury, D., Stefanovic, S., Neri, T., Guillevic, O., Brinon, B., Bellamy, V., Ruecker-Martin, C., Barbry, P., Bel, A., Bruneval, P., Cowan, C., Pouly, J., Mitalipov, S., Gouadon, E., Binder, P., Hagege, A., Desnos, M., Renaud, J.F., Menasche, P. and Puceat, M. (2010) A Purified Population of Multipotent Cardiovascular Progenitors Derived from Primate Pluripotent Stem Cells Engrafts in Postmyocardial Infarcted Nonhuman Primates. Journal of Clinical Investigation, 120, 1125-1139. [Google Scholar] [CrossRef]
|
|
[57]
|
Passier, R., van Laake, L.W. and Mummery, C.L. (2008) Stem-Cell-Based Therapy and Lessons from the Heart. Nature, 453, 322-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Alvarez-Erviti, L., Seow, Y.Q., Yin, H.F., Betts, C., Lakhal, S. and Wood, M.J.A. (2011) Delivery of siRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nature Biotechnology, 29, 341-U179. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wahlgren, J., Karlson, T.D., Brisslert, M., Sani, F.V., Telemo, E., Sunnerhagen, P. and Valadi, H. (2012) Plasma Exosomes Can Deliver Exogenous Short Interfering RNA to Monocytes and Lymphocytes. Nucleic Acids Research, 40, e130. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Khan, M., Nickoloff, E., Abramova, T., Johnson, J., Verma, S.K., Krishnamurthy, P., Mackie, A.R., Vaughan, E., Garikipati, V.N., Benedict, C., Ramirez, V., Lambers, E., Ito, A., Gao, E., Misener, S., Luongo, T., Elrod, J., Qin, G., Houser, S.R., Koch, W.J. and Kishore, R. (2015) Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 117, 52-64.
|
|
[61]
|
Xie, Z., Wang, X., Liu, X., Du, H., Sun, C., Shao, X., Tian, J., Gu, X., Wang, H., Tian, J. and Yu, B. (2018) Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization. Journal of the American Heart Association, 7, e007442. [Google Scholar] [CrossRef]
|
|
[62]
|
Chen, Y., Zhao, Y., Chen, W., Xie, L., Zhao, Z.A., Yang, J., Chen, Y., Lei, W. and Shen, Z. (2017) MicroRNA-133 Overexpression Promotes the Therapeutic Efficacy of Mesenchymal Stem Cells on Acute Myocardial Infarction. Stem Cell Research & Therapy, 8, 268. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Komaki, M., Numata, Y., Morioka, C., Honda, I., Tooi, M., Yokoyama, N., Ayame, H., Iwasaki, K., Taki, A., Oshima, N. and Morita, I. (2017) Exosomes of Human Placenta-Derived Mesenchymal Stem Cells Stimulate Angiogenesis. Stem Cell Research & Therapy, 8, 219. [Google Scholar] [CrossRef] [PubMed]
|