|
[1]
|
Ahmed, M.M., Khan, M.A. and Rainsford, K.D. (2013) Synthesis of Thiophene and NO-Curcuminoids for Antiin-flammatory and Anti-Cancer Activities. Molecules, 18, 1483-501.
|
|
[2]
|
Jantan, I., Saputri, F.C., Qaisar, M.N. and Buang, F. (2012) Correlation between Chemical Composition of Curcuma domestica and Curcuma xanthorrhiza and Their Antioxidant Effect on Human Low-Density Lipoprotein Oxidation. Evidence-Based Complementary and Alternative Medicine, 2012, 438356.
|
|
[3]
|
Wang, L.L., Sun, Y., Huang, K. and Zheng, L. (2013) Curcumin, a Potential Therapeutic Candidate for Retinal Diseases. Molecular Nutrition & Food Research. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tokaç, M., Taner, G., Aydın, S., Ozkardeş, A.B., Dündar, H.Z., Taşlıpınar, M.Y., Arıkök, A.T., Kılıç, M., Başaran, A.A. and Basaran, N. (2013) Protective Effects of Curcumin against Oxidative Stress Parameters and DNA Damage in the Livers and Kidneys of Rats with Biliary Obstruction. Food and Chemical Toxicology, 29, 00053-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vera-Ramirez, L., Pérez-Lopez, P., Varela-Lopez, A., Rami-rez-Tortosa, M., Battino, M. and Quiles, J.L. (2013) Curcumin and Liver Disease. Biofactors, 39, 88-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cecil, R.L.F., Goldman, L. and Schafer, A.I. (2012) Goldman’s Cecil Medicine, Expert Consult Premium Edition-Enhanced Online Features and Print. Goldman’s Cecil Medicine, Elsevier/Saunders.
|
|
[7]
|
Bellentani, S., Saccoccio, G., Masutti, F., Crocè, L.S., Brandi, G., Sasso, F., Cristanini, G. and Tiribelli, C. (2000) Prevalence of and Risk Factors for Hepatic Steatosis in Northern Italy. Annals of Internal Medicine, 132, 112-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lonardo, A., Loria, P., Leonardi, F., Borsatti, A., Neri, P., Pulvirenti, M., Verrone, A.M., Bagni, A., Bertolotti, M., Ganazzi, D., et al. (2002) Fasting Insulin and Uric Acid Levels but Not Indices of Iron Metabolism Are Independent Predictors of Non-Alcoholic Fatty Liver Disease. A Case-Control Study. Digestive and Liver Disease, 34, 204-211. [Google Scholar] [CrossRef]
|
|
[9]
|
Omagari, K., Kadokawa, Y., Masuda, J., Egawa, I., Sawa, T., Hazama, H., Ohba, K., Isomoto, H., Mizuta, Y., Hayashida, K., et al. (2002) Fatty Liver in Non-Alcoholic Non-Overweight Japanese Adults: Incidence and Clinical Characteristics. Journal of Gastroenterology and Hepatology, 17, 1098-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Anstee, Q.M. and Goldin, R.D. (2006) Mouse Models in Non-Alcoholic Fatty Liver Disease and Steatohepatitis Research. International Journal of Experimental Pathology, 87, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
孙永, 彭明利. 姜黄素及其衍生物在肝脏相关疾病中防治作用的研究进展[J]. 药学学报, 2014, 49(11): 1483-1490.
|
|
[12]
|
Rao, D.S., Sekhara, N.C., Satyanarayana, M.N. and Srinivasan, M. (1970) Effect of Curcumin on Serum and Liver Cholesterol Levels in the Rat. The Journal of Nutrition, 100, 1307-1315. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Asai, A. and Miyazawa, T. (2001) Dietary Curcuminoids Prevent High-Fat Diet-Induced Lipid Accumulation in Rat Liver and Epididymal Adipose Tissue. The Journal of Nutrition, 131, 2932-2935. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rukkumani, R., Sri Balasubashini, M., Vishwanathan, P. and Menon, V.P. (2002) Comparative Effects of Curcumin and Photo-Irradiated Curcumin on Alcohol- and Polyunsaturated Fatty Acid-Induced Hyperlipidemia. Pharmacological Research, 46, 257-264. [Google Scholar] [CrossRef]
|
|
[15]
|
Rukkumani, R., Aruna, K., Varma, P.S., Viswanathan, P., Rajasekaran, K.N., et al. (2005) Protective Role of a Novel Curcuminoid on Alcohol and PUFA-Induced Hyperlipidemia. Toxicology Mechanisms and Methods, 15, 227-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jang, E.M., Choi, M.S., Jung, U.J., Kim, M.J., Kim, H.J., et al. (2008) Beneficial Effects of Curcumin on Hyperlipidemia and Insulin Resistance in High-Fat-Fed Hamsters. Metabolism, 57, 1576-1583. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kang, Q. and Chen, A. (2009) Curcumin Eliminates Oxidized LDL Roles in Activating Hepatic Stellate Cells by Suppressing Gene Expression of Lectinlike Oxidized LDL Receptor-1. Laboratory Investigation, 89, 1275-1290. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Panahi, Y., Kianpour, P., Mohtashami, R., Jafari, R., Simen-tal-Mendia, L.E. and Sahebkar, A. (2017) Efficacy and Safety of Phytosomal Curcumin in Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Drug Research, 67, 244-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rahmani, S., Asgary, S., Askari, G., Keshvari, M., Hatamipour, M., Feizi, A. and Sahebkar, A. (2016) Treatment of Non-Alcoholic Fatty Liver Disease with Curcumin: A Randomized Placebo-Controlled Trial. Phytotherapy Research, 30, 1540-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Panahi, Y., Kianpour, P., Mohtashami, R., Jafari, R., Simental-Mendia, L.E. and Sahebkar, A. (2016) Curcumin Lowers Serum Lipids and Uric Acid in Subjects with Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. Journal of Cardiovascular Pharmacology, 68, 223-229. [Google Scholar] [CrossRef]
|
|
[21]
|
Cichoz-Lach, H. and Michalak, A. (2014) Oxidative Stress as a Crucial Factor in Liver Diseases. World Journal of Gastroenterology, 20, 80-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Takaki, A., Kawai, D. and Yamamoto, K. (2013) Multiple Hits, Including Oxidative Stress, as Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (NASH). International Journal of Molecular Sciences, 14, 20704-20728. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gao, H.T., Xu, L.S., Li, D.F., et al. (2013) Effects of Glucagon-Like Peptide-1 on Liver Oxidative Stress, TNF-α and TGF-β1 in Rats with Non-Alcoholic Fatty Liver Disease. Journal of Southern Medical University, 33, 1661-1664.
|
|
[24]
|
舒泳翔, 吴鹏波, 柳健, 等. 姜黄素对实验性大鼠非酒精性脂肪肝病氧化应激、炎性因子及细胞凋亡水平的影响[J]. 医学研究杂志, 2016, 45(3): 126-130.
|
|
[25]
|
Lin, J., Zheng, S. and Chen, A. (2009) Curcumin Attenuates the Effects of Insulin on Stimulating Hepatic Stellate Cell Activation by Interrupting Insulin Signaling and Attenuating Oxidative Stress. Laboratory Investigation, 89, 1397-1409. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Braunersreuther, V., Viviani, G.L., Mach, F., et al. (2012) Role of Cytokines and Chemokines in Non-Alcoholic Fatty. World Journal of Gastroenterology, 18, 727-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lu, Z., Wai, J.T., Jin, J.Y., et al. (2014) Signal Transductions and Nonalcoholic Fatty Liver: A Mini-Review. International Journal of Clinical and Experimental Medicine, 7, 1624-1631.
|
|
[28]
|
Afrin, R., Arumugam, S., Rahman, A., et al. (2017) Curcumin Ameliorates Liver Damage and Progression of NASH in NASH-HCC Mouse Model Possibly by Modulating HMGB1-NF-κB Translocation. International Immunopharmacology, 44, 174-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Feng, M., Li, J., Wang, J., et al. (2014) High Glucose Increases LPS-Induced DC Apoptosis through Modulation of ERK1/2, AKT and Bax/Bcl-2. BMC Gastroenterology, 14, 1-8. [Google Scholar] [CrossRef]
|
|
[30]
|
Li, G., Chen, J.B., Wang, C., et al. (2013) Curcumin Protects against Acetaminophen-Induced Apoptosis in Hepatic Injury. World Journal of Gastroenterology, 19, 7440-7446. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dash, S., Chava, S., Chandra, P.K., et al. (2016) Autophagy in Hepatocellular Carcinomas: From Pathophysiology to Therapeutic Response. Hepatic Medicine: Evidence and Research, 8, 9-20.
|
|
[32]
|
Tan, T.C., Crawford, D.H., Jaskowski, L.A., Subramaniam, V.N., Clouston, A.D., Crane, D.I., Bridle, K.R., Anderson, G.J. and Fletcher, L.M. (2013) Excess Iron Modulates Endoplasmic Reticulum Stress-Associated Pathways in a Mouse Model of Alcohol and High-Fat Diet-Induced Liver Injury. Laboratory Investigation. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lake, A.D., Novak, P., Hardwick, R.N., Flores-Keown, B., Zhao, F., Klimecki, W.T. and Cherrington, N.J. (2013) The Adaptive Endoplasmic Reticulum Stress Response to Lipotoxicity in Progressive Human Nonalcoholic Fatty Liver Disease. Toxicological Sciences, 137, 26-35.
|
|
[34]
|
Iancu, T.C., Manov, I., Shaoul, R., Haimi, M. and Lerner, A. (2013) What’s in a Name?—“Lipolysosome”: Ultrastructural Features of a Lipid-Containing Organelle. Ultrastructural Pathology, 37, 293-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, L., Hai, J., Li, Z., Zhang, Y., Peng, H., Li, K. and Weng, X. (2013) Resveratrol Modulates Autophagy and NF-κB Activity in a Murine Model for Treating Non-Alcoholic Fatty Liver Disease. Food and Chemical Toxicology, 63, 166-173.
|
|
[36]
|
Ma, D., Molusky, M.M., Song, J., Hu, C.R., Fang, F., Rui, C., Mathew, A.V., Pennathur, S., Liu, F., Cheng, J.X., Guan, J.L. and Lin, J.D. (2013) Autophagy Deficiency by Hepatic FIP200 Deletion Uncouples Steatosis from Liver Injury in NAFLD. Molecular Endocrinology, 27, 1643-1654. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sinha, R.A., Farah, B.L., Singh, B.K., Siddique, M.M., Li, Y., Wu, Y., Ilkayeva, O.R., Gooding, J., Ching, J., Zhou, J., Martinez, L., Xie, S., Bay, B.H., Summers, S.A., Newgard, C.B. and Yen, P.M. (2013) Caffeine Stimulates Hepatic Lipid Metabolism via Autophagy-Lysosomal Pathway. Hepatology, 59, 1366-1380.
|
|
[38]
|
Liu, K., Lou, J., Wen, T., Yin, J., Xu, B., Ding, W., Wang, A., Liu, D., Zhang, C., Chen, D. and Li, N. (2013) Depending on the Stage of Hepatosteatosis, p53 Causes Apoptosis Primarily through Either DRAM-Induced Autophagy or BAX. Liver International, 33, 1566-1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Xiao, J., Guo, R., Fung, M.L., Liong, E.C., Chang, R.C., Ching, Y.P. and Tipoe, G.L. (2013) Garlic-Derived S-Allylmercaptocysteine Ameliorates Nonalcoholic Fatty Liver Disease in a Rat Model through Inhibition of Apoptosis and Enhancing Autophagy. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 642920. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Vescovo, T., Romagnoli, A., Perdomo, A.B., Corazzari, M., Ciccosanti, F., Alonzi, T., Nardacci, R., Ippolito, G., Tripodi, M., Garcia-Monzon, C., Lo Iacono, O., Piacentini, M. and Fimia, G.M. (2012) Autophagy Protects Cells from HCV-Induced Defects in Lipid Metabolism. Gastroenterology, 142, 644-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Werling, K. (2011) Role of Autophagy in the Pathogenesis of Liver Diseases. Orvosi Hetilap, 152, 1955-1961. [Google Scholar] [CrossRef]
|
|
[42]
|
Qian, H.R., Yang, Y. and Wang, X.F. (2007) Curcumin Enhanced Adriamycin-Induced Human Liver-Derived Hepatoma G2 Cell Death through Activation of Mitochondria-Mediated Apoptosis and Autophagy. European Journal of Pharmaceutical Sciences, 43, 125-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Shinojima, N., Yokoyama, T., Kondo, Y., et al. (2007) Roles of the Akt/mTOR/p 70S6K and ERK1/2 Signaling Pathways in Curcumin-Induced Auto-Phagy. Autophagy, 3, 635-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Aoki, H., Takada, Y., Kondo, S., Sawaya, R., Aggarwal, B.B. and Kondo, Y. (2007) Evidence That Curcumin Suppresses the Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways. Molecular Pharmacology, 72, 29-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jia, Y.L., Li, J., Qin, Z.H., et al. (2009) Autophagic and Apoptotic Mechanisms of Curcumin-Induced Death in K562 Cells. Journal of Asian Natural Products Research, 11, 918-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shu, J.C., Zhao, J.R., Yang, D.H., et al. (2004) Effect of Curcumin on Proliferation and Apoptosis of Hepatic Stellate Cell Line. Chinese Journal of Digestion, 24, 282-284.
|
|
[47]
|
Kang, H.C., Nan, J.X., Park, P.H., et al. (2002) Curcumin Inhibits Collagen Synthesis and Hepatic Stellate Cell Activation In-Vivo and In-Vitro. Journal of Pharmacy and Pharmacology, 54, 119-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zheng, S. and Chen, A. (2004) Activation of PPAR Gamma Is Required for Curcumin to Induce Apoptosis and to Inhibit the Expression of Extracellular Matrix Genes in Hepatic Stellate Cells in Vitro. Biochemical Journal, 384, 149-157.
|
|
[49]
|
Zheng, S. and Chen, A. (2007) Disruption of Transforming Growth Factor-Beta Signaling by Curcumin Induces Gene Expression of Peroxisome Proliferator-Activated Receptor-Gamma in Rat Hepatic Stellate Cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, 113-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lin, J. and Chen, A. (2011) Curcumin Diminishes the Impacts of Hyperglycemia on the Activation of Hepatic Stellate Cells by Suppressing Membrane Translocation and Gene Expression of Glucose Transporter-2. Molecular and Cellular Endocrinology, 333, 160-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Tang, Y. and Chen, A. (2010) Curcumin Prevents Leptin Raising Glucose Levels in Hepatic Stellate Cells by Blocking Translocation of Glucose Transporter-4 and Increasing Glucokinase. British Journal of Pharmacology, 161, 1137-1149. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kinger, M., Kumar, S. and Kumar, V. (2017) Some Important Dietary Polyphenolic Compounds: An Anti-Inflammatory and Immunoregulatory Perspective. Mini-Reviews in Medicinal Chemistry, 17, 1-5.
|