|
[1]
|
Boya, P., Reggiori, F. and Codogno, P. (2013) Emerging Regulation and Functions of Autophagy. Nature Cell Biology, 15, 713-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Klionsky, D.J. and Codogno, P. (2013) The Mechanism and Physiological Function of Macroautophagy. Journal of Innate Immunity, 5, 427-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mizushima, N., Yoshimori, T. and, Ohsumi, Y. (2011) The Role of Atg Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology, 27, 107-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kim, J., Huang, W.P. and Klionsky, D.J. (2001) Membrane Recruitment of Aut7p in the Autophagy and Cytoplasm to Vacuole Targeting Pathways Requires Aut1p, Aut2p, and the Autophagy Conjugation Complex. The Journal of Cell Biology, 152, 51-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Noda, N.N. and Inagaki, F. (2015) Mechanisms of Autophagy. Annual Review of Biophysics, 44, 101-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Axe, E.L., Walker, S.A., Manifava, M., et al. (2008) Autophagosome Formation from Membrane Compartments Enriched in Phosphatidylinositol 3-Phosphate and Dynamically Connected to the Endoplasmic Reticulum. The Journal of Cell Biology, 182, 685-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., et al. (2010) Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell, 141, 656-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ravikumar, B., Moreau, K., Jahreiss, L., et al. (2010) Plasma Membrane Contributes to the Formation of Pre-Autophagosomal Structures. Nature Cell Biology, 12, 747-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Geng, J., Nair, U., Yasumura-Yorimitsu, K., et al. (2010) Post-Golgi Sec Proteins Are Required for Autophagy in Saccharomyces cerevisiae. Molecular Biology of the Cell, 21, 2257-2269. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
van der Vaart, A., Griffith, J. and Reggiori, F. (2010) Exit from the Golgi Is Required for the Expansion of the Autophagosomal Phagophore in Yeast Saccharomyces cerevisiae. Molecular Biology of the Cell, 21, 2270-2284. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Young, A.R., Chan, E.Y., Hu, X.W., et al. (2006) Starvation and ULK1-Dependent Cycling of Mammalian Atg9 between the TGN and Endosomes. Journal of Cell Science, 119, 3888-3900. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hamasaki, M., Furuta, N., Matsuda, A., et al. (2013) Autoph-agosomes form at ER-Mitochondria Contact Sites. Nature, 495, 389-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ge, L., Melville, D., Zhang, M., et al. (2013) The ER-Golgi Intermediate Compartment Is a Key Membrane Source for the LC3 Lipidation Step of Autophagosome Biogenesis. eLife, 2, e947. [Google Scholar] [CrossRef]
|
|
[14]
|
Graef, M., Friedman, J.R., Graham, C., et al. (2013) ER Exit Sites Are Physical and Functional Core Autophagosome Biogenesis Components. Molecular Biology of the Cell, 24, 2918-2931. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nair, U., Yen, W.L., Mari, M., et al. (2012) A Role for Atg8-PE Deconjugation in Autophagosome Biogenesis. Autophagy, 8, 780-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yu, Z.Q, Ni, T., Hong, B., et al. (2012) Dual Roles of Atg8-PE Deconjugation by Atg4 in Autophagy. Autophagy, 8, 883-892. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kirisako, T., Baba, M., Ishihara, N., et al. (1999) Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast. The Journal of Cell Biology, 147, 435-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ganley, I.G. (2013) Autophagosome Maturation and Lysosomal Fusion. Essays in Biochemistry, 55, 65-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ganley, I.G., Wong, P.M., Gammoh, N., et al. (2011) Distinct Autoph-agosomal-Lysosomal Fusion Mechanism Revealed by Thapsigargin-Induced Autophagy Arrest. Molecular Cell, 42, 731-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Balderhaar, H.J. and Ungermann, C. (2013) CORVET and HOPS Tethering Complexes—Coordinators of Endosome and Lysosome Fusion. Journal of Cell Science, 126, 1307-1316. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Itakura, E., Kishi-Itakura, C. and Mizushima, N. (2012) The Hairpin-Type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell, 151, 1256-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Takats, S., Nagy, P., Varga, A., et al. (2013) Autophagosomal Syntaxin17-Dependent Lysosomal Degradation Maintains Neuronal Function in Drosophila. The Journal of Cell Biology, 201, 531-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Long, X., Ortiz-Vega, S., Lin, Y., et al. (2005) Rheb Binding to Mammalian Target of Rapamycin (mTOR) Is Regulated by Amino Acid Sufficiency. The Journal of Biological Chem-istry, 280, 23433-23436. [Google Scholar] [CrossRef]
|
|
[24]
|
Sancak, Y., Peterson, T.R., Shaul, Y.D., et al. (2008) The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1. Science, 320, 1496-1501. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nobukuni, T., Joaquin, M., Roccio, M., et al. (2005) Amino Acids Mediate mTOR/Raptor Signaling through Activation of Class 3 Phosphatidylinositol 3OH-Kinase. Proceedings of the National Academy of Sciences of the United States of America, 102, 14238-14243. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yorimitsu, T., He, C., Wang, K., et al. (2009) Tap42-Associated Protein Phosphatase Type 2A Negatively Regulates Induction of Autophagy. Autophagy, 5, 616-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 Mediates Cellular En-ergy Response to Control Cell Growth and Survival. Cell, 115, 577-590. [Google Scholar] [CrossRef]
|
|
[28]
|
Chen, Y., Mcmillan-Ward, E., Kong, J., et al. (2007) Mito-chondrial Electron-Transport-Chain Inhibitors of Complexes I and II Induce Autophagic Cell Death Mediated by Reactive Oxygen Species. Journal of Cell Science, 120, 4155-4166. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Scherz-Shouval, R., Shvets, E., Fass, E., et al. (2007) Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4. The EMBO Journal, 26, 1749-1760. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Huang, Q., Wu, Y.T., Tan, H.L., et al. (2009) A Novel Function of poly(ADP-ribose) Polymerase-1 in Modulation of Autophagy and Necrosis under Oxidative Stress. Cell Death & Differentiation, 16, 264-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Finley, D., Ciechanover, A. and Varshavsky, A. (2004) Ubiquitin as a Central Cellular Regulator. Cell, 116, S29-S32.
|
|
[32]
|
Moremen, K.W., Tiemeyer, M. and Nairn, A.V. (2012) Vertebrate Protein Glycosylation: Diversity, Synthesis and Function. Nature Reviews Molecular Cell Biology, 13, 448-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Resh, M.D. (2012) Targeting Protein Lipidation in Disease. Trends in Mo-lecular Medicine, 18, 206-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bononi, A., Agnoletto, C., De Marchi, E., et al. (2011) Protein Kinases and Phosphatases in the Control of Cell Fate. Enzyme Research, 2011, Article ID: 329098.
|
|
[35]
|
Efeyan, A., Zoncu, R. and Sabatini, D.M. (2012) Amino Acids and mTORC1: From Lysosomes to Disease. Trends in Molecular Medicine, 18, 524-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wirth, M., Joachim, J. and Tooze, S.A. (2013) Autophagosome Formation—The Role of ULK1 and Beclin1-PI3KC3 Complexes in Setting the Stage. Seminars in Cancer Biology, 23, 301-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Kundu, M. (2011) ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy. Antioxidants & Redox Signaling, 14, 1953-1958. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cantley, L.C. (2002) The Phosphoinositide 3-Kinase Pathway. Science, 296, 1655-1657. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Vander, H.E., Lee, S.I., Bandhakavi, S., et al. (2007) Insulin Signalling to mTOR Mediated by the Akt/PKB Substrate PRAS40. Nature Cell Biology, 9, 316-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sancak, Y., Thoreen, C.C., Peterson, T.R., et al. (2007) PRAS40 Is an Insu-lin-Regulated Inhibitor of the mTORC1 Protein Kinase. Molecular Cell, 25, 903-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Panaretou, C., Domin, J., Cockcroft, S., et al. (1997) Charac-terization of p150, an Adaptor Protein for the Human Phosphatidylinositol (PtdIns) 3-Kinase. Substrate Presentation by Phosphatidylinositol Transfer Protein to the p150. Ptdins 3-Kinase Complex. The Journal of Biological Chemistry, 272, 2477-2485. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Itakura, E. and Mizushima, N. (2010) Characterization of Autopha-gosome Formation Site by a Hierarchical Analysis of Mammalian Atg Proteins. Autophagy, 6, 764-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Simonsen, A., Birkeland, H.C., Gillooly, D.J., et al. (2004) Alfy, a Novel FYVE-Domain-Containing Protein Associated with Protein Granules and Autophagic Membranes. Journal of Cell Science, 117, 4239-4251. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wei, Y., Pattingre, S., Sinha, S., et al. (2008) JNK1-Mediated Phosphory-lation of Bcl-2 Regulates Starvation-Induced Autophagy. Molecular Cell, 30, 678-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zalckvar, E., Berissi, H., Eisenstein, M., et al. (2009) Phos-phorylation of Beclin 1 by DAP-Kinase Promotes Autophagy by Weakening Its Interactions with Bcl-2 and Bcl-XL. Autophagy, 5, 720-722. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Russell, R.C., Tian, Y., Yuan, H., et al. (2013) ULK1 Induces Au-tophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nature Cell Biology, 15, 741-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shirahama-Noda, K., Kira, S., Yoshimori, T., et al. (2013) TRAPPIII Is Responsible for Vesicular Transport from Early Endosomes to Golgi, Facilitating Atg9 Cycling in Autophagy. Journal of Cell Science, 126, 4963-4973. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
He, C., Baba, M., Cao, Y., et al. (2008) Self-Interaction Is Critical for Atg9 Transport and Function at the Phagophore Assembly Site during Autophagy. Molecular Biology of the Cell, 19, 5506-5516. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Papinski, D., Schuschnig, M., Reiter, W., et al. (2014) Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase. Molecular Cell, 53, 471-483. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Okazaki, N., Yan, J., Yuasa, S., et al. (2000) Interaction of the Unc-51-Like Kinase and Microtubule-Associated Protein Light Chain 3 Related Proteins in the Brain: Possible Role of Vesicular Transport in Axonal Elongation. Molecular Brain Research, 85, 1-12. [Google Scholar] [CrossRef]
|
|
[53]
|
Xie, Y., Kang, R., Sun, X., et al. (2015) Posttranslational Modification of Autophagy-Related Proteins in Macroautophagy. Autophagy, 11, 28-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Jiang, H., Cheng, D., Liu, W., et al. (2010) Protein Kinase C Inhibits Autophagy and Phosphorylates LC3. Biochemical and Biophysical Research Communications, 395, 471-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Colecchia, D., Strambi, A., Sanzone, S., et al. (2012) MAPK15/ERK8 Stimulates Autophagy by Interacting with LC3 and GABARAP Proteins. Autophagy, 8, 1724-1740. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Alemu, E.A., Lamark, T., Torgersen, K.M., et al. (2012) ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex: Sequence Requirements for LC3-Interacting Region (LIR) Motifs. The Journal of Biological Chemistry, 287, 39275-39290. [Google Scholar] [CrossRef]
|
|
[57]
|
Matsumoto, G., Wada, K., Okuno, M., et al. (2011) Serine 403 Phosphorylation of p62/SQSTM1 Regulates Selective Autophagic Clearance of Ubiquitinated Proteins. Molecular Cell, 44, 279-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Mao, K., Chew, L.H., Inoue-Aono, Y., et al. (2013) Atg29 Phosphorylation Regulates Coordination of the Atg17-Atg31-Atg29 Complex with the Atg11 Scaffold during Au-tophagy Initiation. Proceedings of the National Academy of Sciences of the United States of America, 110, E2875-E2884. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Hill, B.G., Benavides, G.A., Lancaster, J.J., et al. (2012) Integration of Cellular Bioenergetics with Mitochondrial Quality Control and Autophagy. Biological Chemistry, 393, 1485-1512. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Matsuda, N., Sato, S., Shiba, K., et al. (2010) PINK1 Stabilized by Mitochondrial Depolarization Recruits Parkin to Damaged Mitochondria and Activates Latent Parkin for Mitophagy. The Journal of Cell Biology, 189, 211-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Chen, Y. and Dorn, G.N. (2013) PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria. Science, 340, 471-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Geisler, S., Holmstrom, K.M., Skujat, D., et al. (2010) PINK1/Parkin-Mediated Mitophagy Is Dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12, 119-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Gegg, M.E., Cooper, J.M., Chau, K.Y., et al. (2010) Mitofusin 1 and Mi-tofusin 2 Are Ubiquitinated in a PINK1/Parkin-Dependent Manner upon Induction of Mitophagy. Human Molecular Genetics, 19, 4861-4870. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Itakura, E., Kishi-Itakura, C., Koyama-Honda, I., et al. (2012) Structures Containing Atg9A and the ULK1 Complex Independently Target Depolarized Mitochondria at Initial Stages of Parkin-Mediated Mitophagy. Journal of Cell Science, 125, 1488-1499. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wu, W., Tian, W., Hu, Z., et al. (2014) ULK1 Translocates to Mitochondria and Phosphorylates FUNDC1 to Regulate Mitophagy. EMBO Reports, 15, 566-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Settembre, C., Di Malta, C., Polito, V.A., et al. (2011) TFEB Links Autophagy to Lysosomal Biogenesis. Science, 332, 1429-1433. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Settembre, C., Zoncu, R., Medina, D.L., et al. (2012) A Lyso-some-to-Nucleus Signalling Mechanism Senses and Regulates the Lysosome via mTOR and TFEB. The EMBO Journal, 31, 1095-1108. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Martina, J.A., Chen, Y., Gucek, M., et al. (2012) MTORC1 Functions as a Transcriptional Regulator of Autophagy by Preventing Nuclear Transport of TFEB. Autophagy, 8, 903-914. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Han, I. and Kudlow, J.E. (1997) Reduced O Glycosylation of Sp1 Is As-sociated with Increased Proteasome Susceptibility. Molecular and Cellular Biology, 17, 2550-2558. [Google Scholar] [CrossRef]
|
|
[70]
|
Zachara, N.E. and Hart, G.W. (2004) O-GlcNAc Modification: A Nutritional Sensor That Modulates Proteasome Function. Trends in Cell Biology, 14, 218-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zachara, N.E. and Hart, G.W. (2004) O-GlcNAc a Sensor of Cel-lular State: The Role of Nucleocytoplasmic Glycosylation in Modulating Cellular Function in Response to Nutrition and Stress. Biochimica et Biophysica Acta, 1673, 13-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Slawson, C., Housley, M.P. and Hart, G.W. (2006) O-GlcNAc Cycling: How a Single Sugar Post-Translational Modification Is Changing the Way We Think about Signaling Networks. Journal of Cellular Biochemistry, 97, 71-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Darley-Usmar, V.M., Ball, L.E. and Chatham, J.C. (2012) Protein O-Linked Beta-N-acetylglucosamine: A Novel Effector of Cardiomyocyte Metabolism and Function. Journal of Molecular and Cellular Cardiology, 52, 538-549. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Love, D.C. and Hanover, J.A. (2005) The Hexosamine Signaling Pathway: Deciphering the “O-GlcNAc Code”. Science’s STKE, 2005, e13. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Guinez, C., Lemoine, J., Michalski, J.C., et al. (2004) 70-kDa-Heat Shock Protein Presents an Adjustable Lectinic Activity towards O-Linked N-Acetylglucosamine. Biochemical and Biophysical Research Communications, 319, 21-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Comer, F.I. and Hart, G.W. (1999) O-GlcNAc and the Control of Gene Expression. Biochimica et Biophysica Acta, 1473, 161-171. [Google Scholar] [CrossRef]
|
|
[77]
|
Liu, K., Paterson, A.J., Zhang, F., et al. (2004) Accumulation of Protein O-GlcNAc Modification Inhibits Proteasomes in the Brain and Coincides with Neuronal Apoptosis in Brain Areas with High O-GlcNAc Metabolism. Journal of Neurochemistry, 89, 1044-1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Wells, L., Whelan, S.A. and Hart, G.W. (2003) O-GlcNAc: A Regulatory Post-Translational Modification. Biochemical and Biophysical Research Communications, 302, 435-441. [Google Scholar] [CrossRef]
|
|
[79]
|
Wang, Z., Gucek, M. and Hart, G.W. (2008) Cross-Talk between GlcNAcylation and Phosphorylation: Site-Specific Phosphorylation Dynamics in Response to Globally Elevated O-GlcNAc. Proceedings of the National Academy of Sciences of the United States of America, 105, 13793-13798. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Shafi, R., Iyer, S.P., Ellies, L.G., et al. (2000) The O-GlcNAc Transferase Gene Resides on the X Chromosome and Is Essential for Embryonic Stem Cell Viability and Mouse Ontogeny. Proceedings of the National Academy of Sciences of the United States of America, 97, 5735-5739. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Yang, Y.R., Song, M., Lee, H., et al. (2012) O-GlcNAcase Is Es-sential for Embryonic Development and Maintenance of Genomic Stability. Aging Cell, 11, 439-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Wang, P., Lazarus, B.D., Forsythe, M.E., et al. (2012) O-GlcNAc Cycling Mutants Modulate Proteotoxicity in Caenorhabditis elegans Models of Human Neurodegenerative Diseases. Proceedings of the National Academy of Sciences of the United States of America, 109, 17669-17674. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Marsh, S.A., Powell, P.C., Dell'Italia, L.J., et al. (2013) Cardiac O-GlcNAcylation Blunts Autophagic Signaling in the Diabetic Heart. Life Sciences, 92, 648-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Bullen, J.W., Balsbaugh, J.L., Chanda, D., et al. (2014) Cross-Talk between Two Essential Nutrient-Sensitive Enzymes: O-GlcNAc Transferase (OGT) and AMP-Activated Protein Kinase (AMPK). The Journal of Biological Chemistry, 289, 10592-10606. [Google Scholar] [CrossRef]
|
|
[85]
|
Wang, S., Huang, X., Sun, D., et al. (2012) Extensive Crosstalk between O-GlcNAcylation and Phosphorylation Regulates Akt Signaling. PLoS ONE, 7, e37427. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Akimoto, Y., Comer, F.I., Cole, R.N., et al. (2003) Localization of the O-GlcNAc Transferase and O-GlcNAc-Modified Proteins in Rat Cerebellar Cortex. Brain Research, 966, 194-205. [Google Scholar] [CrossRef]
|
|
[87]
|
Gao, Y., Wells, L., Comer, F.I., et al. (2001) Dynamic O-Glycosylation of Nuclear and Cytosolic Proteins: Cloning and Characterization of a Neutral, Cytosolic Be-ta-N-acetylglucosaminidase from Human Brain. The Journal of Biological Chemistry, 276, 9838-9845. [Google Scholar] [CrossRef]
|
|
[88]
|
Fulop, N., Feng, W., Xing, D., et al. (2008) Aging Leads to In-creased Levels of Protein O-Linked N-Acetylglucosamine in Heart, Aorta, Brain and Skeletal Muscle in Brown-Norway Rats. Biogerontology, 9, 139-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Liu, Y., Li, X., Yu, Y., et al. (2012) Developmental Regulation of Protein O-GlcNAcylation, O-GlcNAc Transferase, and O-GlcNAcase in Mammalian Brain. PLoS ONE, 7, e43724. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Robertson, L.A., Moya, K.L. and Breen, K.C. (2004) The Po-tential Role of Tau Protein O-Glycosylation in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 6, 489-495. [Google Scholar] [CrossRef]
|
|
[91]
|
Liu, F., Shi, J., Tanimukai, H., et al. (2009) Reduced O-GlcNAcylation Links Lower Brain Glucose Metabolism and Tau Pathology in Alzheimer’s Disease. Brain, 132, 1820-1832. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Yuzwa, S.A., Shan, X., Macauley, M.S., et al. (2012) In-creasing O-GlcNAc Slows Neurodegeneration and Stabilizes Tau against Aggregation. Nature Chemical Biology, 8, 393-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Yuzwa, S.A., Macauley, M.S., Heinonen, J.E., et al. (2008) A Potent Mechanism-Inspired O-GlcNAcase Inhibitor That Blocks Phosphorylation of Tau in Vivo. Nature Chemical Biology, 4, 483-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Yu, Y., Zhang, L., Li, X., et al. (2012) Differential Effects of an O-GlcNAcase Inhibitor on Tau Phosphorylation. PLoS ONE, 7, e35277. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Marotta, N.P., Cherwien, C.A., Abeywardana, T., et al. (2012) O-GlcNAc Modification Prevents Peptide-Dependent Acceleration of Alpha-Synuclein Aggregation. ChemBioChem, 13, 2665-2670. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Kumar, A., Singh, P.K., Parihar, R., et al. (2014) Decreased O-Linked GlcNAcylation Protects from Cytotoxicity Mediated by Huntingtin Exon1 Protein Fragment. The Journal of Biological Chemistry, 289, 13543-13553. [Google Scholar] [CrossRef]
|
|
[97]
|
Zhao, Y., Xiong, X. and Sun, Y. (2011) DEPTOR, an mTOR In-hibitor, Is a Physiological Substrate of SCF(betaTrCP) E3 Ubiquitin Ligase and Regulates Survival and Autophagy. Molecular Cell, 44, 304-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Gao, D., Inuzuka, H., Tan, M.K., et al. (2011) mTOR Drives Its Own Activation via SCF(betaTrCP)-Dependent Degradation of the mTOR Inhibitor DEPTOR. Molecular Cell, 44, 290-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Kuang, E., Okumura, C.Y., Sheffy-Levin, S., et al. (2012) Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection. PLOS Genetics, 8, e1003007. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Nazio, F., Strappazzon, F., Antonioli, M., et al. (2013) mTOR Inhibits Autophagy by Controlling ULK1 Ubiquitylation, Self-Association and Function through AMBRA1 and TRAF6. Nature Cell Biology, 15, 406-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Shi, C.S. and Kehrl, J.H. (2010) TRAF6 and A20 Regulate Lysine 63-Linked Ubiquitination of Beclin-1 to Control TLR4-Induced Autophagy. Science Signaling, 3, a42. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Chen, D., Gao, F., Li, B., et al. (2010) Parkin Mono-Ubiquitinates Bcl-2 and Regulates Autophagy. The Journal of Biological Chemistry, 285, 38214-38223. [Google Scholar] [CrossRef]
|
|
[103]
|
Platta, H.W., Abrahamsen, H., Thoresen, S.B., et al. (2012) Nedd4-Dependent Lysine-11-Linked Polyubiquitination of the Tumour Suppressor Beclin 1. Biochemical Journal, 441, 399-406. [Google Scholar] [CrossRef]
|
|
[104]
|
Tang, F., Wang, B., Li, N., et al. (2011) RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1. PLoS ONE, 6, e24367. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Tasaki, T., Kim, S.T., Zakrzewska, A., et al. (2013) UBR Box N-recognin-4 (UBR4), an N-Recognin of the N-End Rule Pathway, and Its Role in Yolk Sac Vascular Development and Autophagy. Proceedings of the National Academy of Sciences of the United States of America, 110, 3800-3805. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Ossareh-Nazari, B., Nino, C.A., Bengtson, M.H., et al. (2014) Ubiquitylation by the Ltn1 E3 Ligase Protects 60S Ribosomes from Starvation-Induced Selective Autophagy. The Journal of Cell Biology, 204, 909-917. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Jin, S.M. and Youle, R.J. (2012) PINK1- and Parkin-Mediated Mi-tophagy at a Glance. Journal of Cell Science, 125, 795-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Khaminets, A., Behl, C. and Dikic, I. (2016) Ubiquitin-Dependent and Independent Signals in Selective Autophagy. Trends in Cell Biology, 26, 6-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Narendra, D., Kane, L.A., Hauser, D.N., et al. (2010) p62/SQSTM1 Is Required for Parkin-Induced Mitochondrial Clustering But Not Mitophagy; VDAC1 Is Dis-pensable for Both. Autophagy, 6, 1090-1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Sun, Y., Vashisht, A.A., Tchieu, J., et al. (2012) Voltage-Dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy. The Journal of Biological Chemistry, 287, 40652-40660. [Google Scholar] [CrossRef]
|
|
[111]
|
Chan, N.C., Salazar, A.M., Pham, A.H., et al. (2011) Broad Acti-vation of the Ubiquitin-Proteasome System by Parkin Is Critical for Mitophagy. Human Molecular Genetics, 20, 1726-1737. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Sarraf, S.A., Raman, M., Guarani-Pereira, V., et al. (2013) Landscape of the PARKIN-Dependent Ubiquitylome in Response to Mitochondrial Depolarization. Nature, 496, 372-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Bingol, B., Tea, J.S., Phu, L., et al. (2014) The Mitochondrial Deubiquitinase USP30 Opposes Parkin-Mediated Mitophagy. Nature, 510, 370-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Park, Y.Y., Lee, S., Karbowski, M., et al. (2010) Loss of MARCH5 Mitochondrial E3 Ubiquitin Ligase Induces Cellular Senescence through Dynamin-Related Protein 1 and Mitofusin 1. Journal of Cell Science, 123, 619-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Kuang, E., Qi, J. and Ronai, Z. (2013) Emerging Roles of E3 Ubiquitin Ligases in Autophagy. Trends in Biochemical Sciences, 38, 453-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Mcewan, D.G. and Dikic, I. (2011) The Three Musketeers of Au-tophagy: Phosphorylation, Ubiquitylation and Acetylation. Trends in Cell Biology, 21, 195-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Rogov, V., Dotsch, V., Johansen, T., et al. (2014) Interactions be-tween Autophagy Receptors and Ubiquitin-Like Proteins form the Molecular Basis for Selective Autophagy. Molecular Cell, 53, 167-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[118]
|
Fusco, C., Micale, L., Egorov, M., et al. (2012) The E3-Ubiquitin Ligase TRIM50 Interacts with HDAC6 and p62, and Promotes the Sequestration and Clearance of Ubiq-uitinated Proteins into the Aggresome. PLoS ONE, 7, e40440. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Mancias, J.D. and Kimmelman, A.C. (2016) Mechanisms of Selective Autophagy in Normal Physiology and Cancer. Journal of Molecular Biology, 428, 1659-1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Komatsu, M., Kurokawa, H., Waguri, S., et al. (2010) The Selective Autophagy Substrate p62 Activates the Stress Responsive Transcription Factor Nrf2 through Inactivation of Keap1. Nature Cell Biology, 12, 213-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
Katsuragi, Y., Ichimura, Y. and Komatsu, M. (2015) p62/SQSTM1 Func-tions as a Signaling Hub and an Autophagy Adaptor. The FEBS Journal, 282, 4672-4678. [Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Lau, A., Wang, X.J., Zhao, F., et al. (2010) A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62. Molecular and Cellular Biology, 30, 3275-3285. [Google Scholar] [CrossRef]
|
|
[123]
|
Wild, P., Farhan, H., Mcewan, D.G., et al. (2011) Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth. Science, 333, 228-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Schweers, R.L., Zhang, J., Randall, M.S., et al. (2007) NIX Is Re-quired for Programmed Mitochondrial Clearance during Reticulocyte Maturation. Proceedings of the National Academy of Sciences of the United States of America, 104, 19500-19505. [Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Sandoval, H., Thiagarajan, P., Dasgupta, S.K., et al. (2008) Essen-tial Role for Nix in Autophagic Maturation of Erythroid Cells. Nature, 454, 232-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Zhang, J. and Ney, P.A. (2009) Role of BNIP3 and NIX in Cell Death, Autophagy, and Mitophagy. Cell Death & Differentiation, 16, 939-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[127]
|
Liu, L., Feng, D., Chen, G., et al. (2012) Mitochondrial Outer-Membrane Protein FUNDC1 Mediates Hypoxia-Induced Mitophagy in Mammalian Cells. Nature Cell Biology, 14, 177-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Eisenberg, T., Schroeder, S., Andryushkova, A., et al. (2014) Nu-cleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme a Stimulates Autophagy and Prolongs Lifespan. Cell Metabolism, 19, 431-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[129]
|
Marino, G., Pietrocola, F., Eisenberg, T., et al. (2014) Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 53, 710-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[130]
|
Fullgrabe, J., Lynch-Day, M.A., Heldring, N., et al. (2013) The Histone H4 Lysine 16 Acetyltransferase hMOF Regulates the Outcome of Autophagy. Nature, 500, 468-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[131]
|
Mackeh, R., Lorin, S., Ratier, A., et al. (2014) Reactive Oxygen Species, AMP-Activated Protein Kinase, and the Transcription Cofactor p300 Regulate Alpha-Tubulin Acetyltransferase-1 (al-phaTAT-1/MEC-17)-Dependent Microtubule Hyperacetylation during Cell Stress. The Journal of Biological Chemistry, 289, 11816-11828. [Google Scholar] [CrossRef]
|
|
[132]
|
Lee, I.H. and Finkel, T. (2009) Regulation of Autophagy by the p300 Acetyltransferase. The Journal of Biological Chemistry, 284, 6322-6328. [Google Scholar] [CrossRef]
|
|
[133]
|
Lin, S.Y., Li, T.Y., Liu, Q., et al. (2012) GSK3-TIP60-ULK1 Sig-naling Pathway Links Growth Factor Deprivation to Autophagy. Science, 336, 477-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[134]
|
Liu, K.P., Zhou, D., Ouyang, D.Y., et al. (2013) LC3B-II Deacety-lation by Histone Deacetylase 6 Is Involved in Serum-Starvation-Induced Autophagic Degradation. Biochemical and Biophysical Research Communications, 441, 970-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[135]
|
Huang, R., Xu, Y., Wan, W., et al. (2015) Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Molecular Cell, 57, 456-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[136]
|
Lee, I.H., Cao, L., Mostoslavsky, R., et al. (2008) A Role for the NAD-Dependent Deacetylase Sirt1 in the Regulation of Autophagy. Proceedings of the National Academy of Sciences of the United States of America, 105, 3374-3379. [Google Scholar] [CrossRef] [PubMed]
|
|
[137]
|
Jeong, H., Then, F., Melia, T.J., et al. (2009) Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation. Cell, 137, 60-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[138]
|
Murphy, M.P. (2012) Mitochondrial Thiols in Antioxidant Protec-tion and Redox Signaling: Distinct Roles for Glutathionylation and Other Thiol Modifications. Antioxidants & Redox Signaling, 16, 476-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[139]
|
Anathy, V., Roberson, E.C., Guala, A.S., et al. (2012) Redox-Based Regulation of Apoptosis: S-Glutathionylation as a Regulatory Mechanism to Control Cell Death. Antioxidants & Redox Signaling, 16, 496-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[140]
|
Lee, J., Giordano, S. and Zhang, J. (2012) Autophagy, Mitochondria and Oxidative Stress: Cross-Talk and Redox Signalling. Biochemical Journal, 441, 523-540. [Google Scholar] [CrossRef]
|
|
[141]
|
Levonen, A.L., Hill, B.G., Kansanen, E., et al. (2014) Redox Regulation of Antioxidants, Autophagy, and the Response to Stress: Implications for Electrophile Therapeutics. Free Radical Biology & Medicine, 71, 196-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[142]
|
Hampe, C., Ardila-Osorio, H., Fournier, M., et al. (2006) Biochemical Analysis of Parkinson’s Disease-Causing Variants of Parkin, an E3 Ubiquitin-Protein Ligase with Monoubiquitylation Capacity. Human Molecular Genetics, 15, 2059-2075. [Google Scholar] [CrossRef] [PubMed]
|
|
[143]
|
Vandiver, M.S., Paul, B.D., Xu, R., et al. (2013) Sulfhydration Mediates Neuroprotective Actions of Parkin. Nature Communications, 4, 1626. [Google Scholar] [CrossRef] [PubMed]
|
|
[144]
|
Krebiehl, G., Ruckerbauer, S., Burbulla, L.F., et al. (2010) Reduced Basal Autophagy and Impaired Mitochondrial Dynamics Due to Loss of Parkinson’s Disease-Associated Protein DJ-1. PLoS ONE, 5, e9367. [Google Scholar] [CrossRef] [PubMed]
|
|
[145]
|
Giordano, S., Darley-Usmar, V. and Zhang, J. (2014) Au-tophagy as an Essential Cellular Antioxidant Pathway in Neurodegenerative Disease. Redox Biology, 2, 82-90. [Google Scholar] [CrossRef] [PubMed]
|