|
[1]
|
张翔宇, 章骅, 何品晶, 等. 不锈钢渣资源利用特性与重金属污染风险[J]. 环境科学研究, 2008, 21(4): 33-37.
|
|
[2]
|
魏代修, 徐安军, 贺东风, 等. 电炉渣资源利用特性及铬的浸出特性[J]. 钢铁, 2012, 47(10): 92-96.
|
|
[3]
|
Mostafaee, S., Andersson, M. and Jönsson, P.G. (2011) Petrographical Study of Microstructural Evolution of EAF Duplex Stainless Steelmaking Slags. Ironmaking & Steelmaking, 38, 90-100. [Google Scholar] [CrossRef]
|
|
[4]
|
甄常亮, 那贤昭, 齐渊洪, 等. 不锈钢渣基础性能研究及资源化利用风险评价[J]. 炼钢, 2012, 28(4): 74-77.
|
|
[5]
|
陈子宏, 马国军, 肖海明, 等. 不锈钢冶炼电炉渣结构性质及浸出行为研究[J]. 武汉科技大学学报, 2009, 32(5): 466-470.
|
|
[6]
|
王亚军, 李俊国, 郑娜. AOD不锈钢渣矿相组成及其显微形貌[J]. 钢铁钒钛, 2013, 34(4): 68-72.
|
|
[7]
|
盛灿文, 柴立元, 王云燕, 等. 铬渣中六价铬水浸动力学研究[J]. 安全与环境工程, 2006, 13(3): 40-44.
|
|
[8]
|
蔡木林, 景学森, 杨亚提. 铬渣酸溶性六价铬浸出动力学研究[J]. 环境工程学报, 2007, 1(10): 90-93.
|
|
[9]
|
Iacobescu, R.I., Malfliet, A., Machiels, L., Jones, P.T., Blanpain, B. and Pontikes, Y. (2014) Stabilisation and Microstructural Modification of Stainless Steel Converter Slag by Addition of an Alumina Rich By-Product. Waste & Biomass Valorization, 5, 343-353. [Google Scholar] [CrossRef]
|
|
[10]
|
Park, D., Lim, S.-R., Lee, H.W. and Park, J.M. (2008) Mecha-nism and Kinetics of Cr(VI) Reduction by Waste Slag Generated from Iron Making Industry. Hydrometallurgy, 93, 72-75. [Google Scholar] [CrossRef]
|
|
[11]
|
Qifeng, S., Qingyun, L., Lijun, W. and Kuo-Chih, C. (2014) Effects of MnO and CaO/SiO2 Mass Ratio on Phase for Mations of CaO-Al2O3-MgO-SiO2-CrOx Slag at 1673 K and PO2 = 10−10 atm. Steel Research International, 86, 351-399.
|
|
[12]
|
李小明, 李文锋, 王尚杰, 等. 不锈钢渣资源化研究现状[J]. 湿法冶金, 2012, 31(1): 5-8.
|
|
[13]
|
沈中芳, 肖永力, 张友平. 不锈钢渣返高炉流程生产镍铬生铁的可行性[J]. 宝钢技术, 2016(2): 13-16.
|
|
[14]
|
李俊国, 曾亚南. 堆存AOD不锈钢渣的处理方法[P]. 中国CN105039615A, 2015.
|
|
[15]
|
李俊国, 曾亚南. 堆存EAF不锈钢渣的处理方法[P]. 中国CN105039617A, 2015.
|
|
[16]
|
张智敏. 不锈钢生产中废渣治理的研究[J]. 环境保护, 1991(5): 20-21.
|
|
[17]
|
Zhang, Y., Guo, W. and Jia, X. (2015) Recovery of Cr during Smelting Treatment of Stainless Steel Dust. 6th International Symposium on High-Temperature Metallurgical Processing, 15-19 March 2015, 305-312. [Google Scholar] [CrossRef]
|
|
[18]
|
Parron-Rubio, M.E., Perez-García, F., Gonzalez-Herrera, A. and Rubio-Cintas, M.D. (2018) Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances. Materials, 11, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Saly, F., Guo, L.P. and Rui, M. (2018) Comparison of Hydration Prop-erties of Cement-Carbon Steel Slag and Cement-Stainless Steel Slag Blended Binder. Advances in Materials Science and Engineering, 2018, 1-9.
|
|
[20]
|
Iacobescu, R.I., Angelopoulos, G.N., Jones, P.T., Blanpain, B. and Pontikes, Y. (2016) Ladle Metallurgy Stainless Steel Slag as a Raw Material in Ordinary Portland Cement Production: A Possibility for Industrial Symbiosis. Journal of Cleaner Production, 112, 872-881. [Google Scholar] [CrossRef]
|
|
[21]
|
Rosales, J., Cabrera, M. and Agrela, F. (2017) Effect of Stainless Steel Slag Waste as a Replacement for Cement in Mortars. Mechanical and Statistical Study. Construction and Building Materials, 142, 444-458. [Google Scholar] [CrossRef]
|
|
[22]
|
张志波, 细野秀雄, 阿部良弘. Na2O-CaO-TiO2-P2O5系统多孔微晶玻璃的制备[J]. 玻璃与搪瓷, 1993, 1: 11-13.
|
|
[23]
|
郭华, 苍大强, 白皓, 等. 不锈钢渣制备陶瓷的实验研究[J]. 物理测试, 2008, 26(4): 17-20.
|
|
[24]
|
Galán-Arboledas, R.J., Diego, J.Á., Dondi, M. and Bueno, S. (2017) Energy, Environmental and Technical Assessment for the Incorporation of EAF Stainless Steel Slag in Ceramic Building Materials. Journal of Cleaner Production, 142, 1778-1788. [Google Scholar] [CrossRef]
|
|
[25]
|
厉亚军. 不锈钢渣降解强温室气体六氟化硫(SF6)的研究[D]: [硕士学位论文]. 上海: 上海大学, 2012.
|
|
[26]
|
Chen, L., Yang, B., Shen, X., Xie, Z.H. and Sun, F.R. (2015) Thermodynamic Optimization Opportunities for the Recovery and Utilization of Residual Energy and Heat in China’s Iron and Steel Industry: A Case Study. Applied Thermal Engineering, 86, 151-160. [Google Scholar] [CrossRef]
|
|
[27]
|
Yu, B., Li, X., Qiao, Y.B. and Shi, L. (2015) Low-Carbon Transition of Iron and Steel Industry in China: Carbon Intensity, Economic Growth and Policy Intervention. Journal of Environmental Sciences, 28, 137-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xuan, Y.N. and Yue, Q. (2016) Forecast of Steel Demand and the Availability of Depreciated Steel Scrap in China. Resources, Conservation and Recycling, 109, 1-12. [Google Scholar] [CrossRef]
|
|
[29]
|
Kheshgi, H., Coninck, H.D. and Kessels, J. (2012) Carbon Capture and Storage: Seven Years after the IPCC Special report. Mitigation & Adaptation Strategies for Global Change, 17, 563-567. [Google Scholar] [CrossRef]
|
|
[30]
|
Quirion, P., Rozenberg, J., Sassi, O. and Vogt-Schilb, A. (2011) How CO2 Capture and Storage Can Mitigate Carbon Leakage. Working Papers, 2, 1-18. [Google Scholar] [CrossRef]
|
|
[31]
|
Yu, J. and Wang, K. (2011) Study on Characteristics of Steel Slag for CO2 Capture. Energy & Fuels, 25, 5483-5492. [Google Scholar] [CrossRef]
|
|
[32]
|
Takahashi, T. and Yabuta, K. (2002) New Applications for Iron and Steelmaking Slag. NKK Technical Review, 87, 38-44.
|
|
[33]
|
Chang, E.E., Pan, S.Y., Chen, Y.H., Chen, Y.H., Tan, C.S. and Chiang, P.C. (2012) Accelerated Carbonation of Steelmaking Slags in a High-Gravity Rotating Packed Bed. Journal of Hazardous Materials, 227-228, 97-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Huijgen, W.J., Witkamp, G.J. and Comans, R.N. (2005) Min-eral CO2 Sequestration by Steel Slag Carbonation. Environmental Science & Technology, 39, 9676-9682. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K. and Yamada, K. (2008) Development of a New pH-Swing CO2 Mineralization Process with a Recyclable Reaction Solution. Energy, 33, 776-784. [Google Scholar] [CrossRef]
|
|
[36]
|
Sun, Y., Yao, M.S. and Zhang, J.P. (2011) Indirect CO₂ Mineral Sequestration by Steelmaking Slag with NH₄Cl as Leaching Solution. Chemical Engineering Journal, 173, 437-445. [Google Scholar] [CrossRef]
|
|
[37]
|
张保平, 唐朝波, 唐谟堂, 等. Mg(II)-Ca(II)-NH3-CO32--SO42--H2O体系钙镁溶解热力学分析[J]. 湿法冶金, 2005, 24(1): 26-32.
|
|
[38]
|
Moon, E.J. and Choi, Y.C. (2018) Development of Carbon-Capture Binder Using Stainless Steel Argon Oxygen Decarburization Slag Activated by Carbonation. Journal of Cleaner Production, 180, 642-654. [Google Scholar] [CrossRef]
|
|
[39]
|
Johnson, D.C., Macleod, C.L. and Carey, P.J. (2003) Solidifi-cation of Stainless Steel Slag by Accelerated Carbonation. Environmental Technology Letters, 24, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Baciocchi, R., Costa, G., Polettini, A. and Pomi, R. (2009) In-fluence of Particle Size on the Carbonation of Stainless Steel Slag for CO2 Storage. Energy Procedia, 1, 4859-4866. [Google Scholar] [CrossRef]
|