|
[1]
|
Wu, H.C., Chang, X., Liu, L., Zhao, F. and Zhao, Y. (2010) Chemistry of Carbon Nanotubes in Biomedical Applications. Journal of Materials Chemistry, 20, 1036-1052. [Google Scholar] [CrossRef]
|
|
[2]
|
Saito, N., Haniu, H., Usui, Y., Aoki, K., et al. (2014) Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 114, 6040-6079. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Comparetti, E.J., Pedrosa, V.A. and Kaneno, R. (2018) Carbon Nanotube as a Tool for Fighting Cancer. Bioconjugate Chemistry, 29, 709-718. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Karousis, N., Papi, R.M., Siskos, A., Vakalopoulou, P., et al. (2009) Peptidomimetic-Functionalized Carbon Nanotubes with Antitrypsin Activity. Carbon, 47, 3550-3558. [Google Scholar] [CrossRef]
|
|
[5]
|
Pagona, G. and Tagmatarchis, N. (2006) Carbon Nanotubes: Materials for Medicinal Chemistry and Biotechnological Applications. Current Medicinal Chemistry, 13, 1789-1798. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bhirde, A.A., Patel, S., Sousa, A.A., Patel, V., Molinolo, A.A., et al. (2010) Distribution and Clearance of PEG-Single-Walled Carbon Nanotube Cancer Drug Delivery Vehicles in Mice. Nanomedicine, 5, 1535-1546.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Alshehri, R., Ilyas, A.M., Hasan, A., Arnaout, A., Ahmed, F. and Memic, A. (2016) Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. Journal of Medicinal Chemistry, 59, 8149-8167.
[Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Quiles-Díaz, S., Martínez-Rubí, Y., Guan, J., et al. (2019) Enhanced Thermal Conductivity in Polymer Nanocomposites via Covalent Functionalization of Boron Nitride Nanotubes with Short Polyethylene Chains for Heat-Transfer Applications. ACS Applied Nano Materials, 2, 440-451. [Google Scholar] [CrossRef]
|
|
[9]
|
Su, Z., Wang, H., Tian, K., Huang, W., et al. (2018) Multifunctional Anisotropic Flexible Cycloaliphatic Epoxy Resin Nanocomposites Reinforced by Aligned Graphite Flake with Non-Covalent Biomimetic Func-tionalization. Composites Part A: Applied Science and Manufacturing, 109, 472-480. [Google Scholar] [CrossRef]
|
|
[10]
|
Mehra, N.K., Jain, K. and Jain, N.K. (2015) Pharmaceutical and Bio-medical Applications of Surface Engineered Carbon Nanotubes. Drug Discovery Today, 20, 750-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yan, Y., Wang, R.Z., Hu, Y., et al. (2018) Stacking of Doxorubicin on Folic Acid-Targeted Multiwalled Carbon Nanotubes for in Vivo Chemotherapy of Tumors. Drug Delivery, 25, 1607-1616.
[Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Battigelli, A., Russier, J., Venturelli, E., Fabbro, C., Petronilli, V., Ber-nardi, P., Da Ros, T., Prato, M. and Bianco, A. (2013) Peptide-Based Carbon Nanotubes for Mitochondrial Targeting. Nanoscale, 5, 9110-9117.
[Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wolski, P., Nieszporek, K. and Multimodal, T.P. (2018) pH Sensitive, and Magnetically Assisted Carrier of Doxorubicin Designed and Analyzed by Means of Computer Simulations. Langmuir, 34, 2543-2550.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Khazaei, A., Rad, M.N. and Borazjani, M.K. (2010) Organic Functionaliza-tion of Single-Walled Carbon Nanotubes (SWCNTs) with Some Chemotherapeutic Agents as a Potential Method for Drug Delivery. International Journal of Nanomedicine, 5, 639-645. [Google Scholar] [CrossRef]
|
|
[15]
|
Behnam, B., Shier, W.T., Nia, A.H., Abnous, K. and Ramezani, M. (2013) Non-Covalent Functionalization of Single-Walled Carbon Nanotubes with Modified Polyethyleneimines for Efficient Gene Delivery. International Journal of Pharmaceutics, 454, 204-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cifuentes-Rius, A., Boase, N.R.B., Font, I., et al. (2017) In Vivo Fate of Carbon Nanotubes with Different Physicochemical Properties for Gene Delivery Applications. ACS Applied Materials & Interfaces, 9, 11461-11471.
[Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, Y.P., Lin, I.J., Chen, C.C., Hsu, Y.C., Chang, C.C. and Lee, M.J. (2013) Delivery of Small Interfering RNAs in Human Cervical Cancer Cells by Polyethylenimine-Functionalized Carbon Nanotubes. Na-noscale Research Letters, 8, 267. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, H., Jiao, X., Chen, Q., Ji, Y., Zhang, X., Zhu, X. and Zhang, Z. (2016) A Multi-Functional Nanoplatform for Tumor Synergistic Phototherapy. Nanotechnology, 27, Article ID: 085104.
[Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Iancu, C., Mocan, L., Bele, C., Orza, A.I., Tabaran, F.A., Catoi, C., Stiufiuc, R., Stir, A., Matea, C. and Iancu, D. (2011) Enhanced Laser Thermal Ablation for the in Vitro Treatment of Liver Cancer by Specific Delivery of Multiwalled Carbon Nanotubes Functionalized with Human Serum Albumin. International Journal of Nanomedicine, 6, 129-141.
[Google Scholar] [CrossRef]
|
|
[20]
|
Neves, L.F., Krais, J.J., Van Rite, B.D., Ramesh, R., Resasco, D.E. and Harrison, R.G. (2013) Targeting Single-Walled Carbon Nanotubes for the Treatment of Breast Cancer Using Photothermal Therapy. Nanotechnology, 24, Article ID: 375104. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, D., Ren, Y., Shao, Y., Yu, D. and Meng, L. (2017) Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment. Bioconjugate Chemistry, 28, 2815-2822. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Suo, X., Eldridge, B.N., Zhang, H., et al. (2018) P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS Applied Materials & Interfaces, 10, 33464-33473.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tong, L., Liu, Y., Dolash, B.D., Jung, Y., Slipchenko, M.N., Bergstrom, D.E. and Cheng, J.-X. (2012) Label-Free Imaging of Semiconducting and Metallic Carbon Nanotubes in Cells and Mice Using Transient Ab-sorption Microscopy. Nature Nanotechnology, 7, 56-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, J., Chang, X., Chen, X., Gu, Z., Zhao, F., Chai, Z. and Zhao, Y. (2014) Toxicity of Inorganic Nanomaterials in Biomedical Imaging. Biotechnology Advances, 32, 727-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hernández-Rivera, M., Kumar, I., Ch, S.Y., et al. (2017) High-Performance Hybrid Bismuth-Carbon Nanotube Based Contrast Agent for X-Ray CT Imaging. ACS Applied Materials & Interfaces, 9, 5709-5716.
[Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Heister, E., Brunner, E.W., Dieckmann, G.R., et al. (2013) Are Carbon Nanotubes a Natural Solution? Applications in Biology and Medicine. ACS Applied Materials & Interfaces, 5, 1870-1891. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pulskamp, K., Diabate, S. and Krug, H.F. (2006) Carbon Nanotubes Show No Sign of Acute Toxicity But Induce Intracellular Reactive Oxygen Species in Dependence on Contaminants. Toxicology Letters, 168, 58-74.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Murray, A.R., Kisin, E., Leonard, S.S., et al. (2009) Oxidative Stress and Inflammatory Response in Dermal Toxicity of Single-Walled Carbon Nanotubes. Toxicology, 257, 161-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kagan, V.E., Konduru, N.V., Feng, W., et al. (2010) Carbon Nanotubes Degraded by Neutrophil Myeloperoxidase Induce Less Pulmonary Inflammation. Nature Nanotechnology, 5, 354-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Alpatova, A.L., Shan, W., Babica, P., Upham, B.L., et al. (2010) Single-Walled Carbon Nanotubes Dispersed in Aqueous Media via Noncovalent Functionalization: Effect of Dispersant on the Stability, Cytotoxicity, and Epigenetic Toxicity of Nanotube Suspensions. Water Research, 44, 505-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nam, C.W., Kang, S.J., Kang, Y.K., Kwak, M.K., et al. (2011) Cell Growth Inhibition and Apoptosis by SDS-Solubilized Single-Walled Carbon Nanotubes in Normal Rat Kidney Epithelial Cells. Archives of Pharmacal Research, 34, 661-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yu, J., Liu, S., Wu, B., et al. (2016) Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Func-tional Groups. Environmental Science & Technology, 50, 3985-3994. [Google Scholar] [CrossRef] [PubMed]
|