[1]
|
C. Daniel, J. Full, L. Gonzalez, C. Lupulescu, J. Manz, A. Merli, S. Vajda and L. Woste. Deciphering the reaction dynamics un- derlying optimal control laser fields. Science, 2003, 299(5606): 536-539.
|
[2]
|
R. J. Levis, G. M. Menkir and H. Rabitz. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science, 2001, 292(5517): 709-713.
|
[3]
|
邹华, 周常河. 飞秒脉冲时空变换整形技术[J]. 激光与光电子学进展, 2005, 42(2): 2-6.
|
[4]
|
H. Rabitz. Shaped laser pulses as reagents. Science, 2003, 299 (5606): 525-527.
|
[5]
|
R. N. Zare. Laser control of chemical reactions. Science, 1998, 279(5358): 1875-1879.
|
[6]
|
H. Rabitz, R. de Vivie-Riedle, M. Motzkus and K. Kompa. Whither the future of controlling quantum phenomena. Science, 2000, 288(5467): 824-828.
|
[7]
|
H. P. Sardesai, C.-C. Chang and A. M. Weiner. A femtosecond code-division multiple-access communication system test bed. Journal of Lightwave Technology, 1998, 16(11): 1953-1964.
|
[8]
|
Q. Liu, G. H. Cheng, Y. S. Wang, Z. Cheng, W. Zhao and G. F. Chen. Three-dimensional optical storage in fused silicausing modulated femtosecond pulses. Journal of Chinese Optics Letters, 2004, 2: 292-294.
|
[9]
|
B. L. Li, W. S. Warren and M. C. Fischer. Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses. Journal of the Optical Society of America, 2010, 18(25): 25825-25832.
|
[10]
|
I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy and M. Dantus. Selective two-photon microscopy with shaped femtosecond pulses. Journal of the Optical Society of America, 2003, 11(14): 1695-1701.
|
[11]
|
E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer and M. T. Zanni. Facile collection of two-dimensional electronic spectra using femtosecond pulse-shaping technology. Journal of the Optical Society of America, 2007, 15(25): 16681- 16689.
|
[12]
|
V. E. Centonze, J. G. White. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Journal of Biophysics, 1998, 75(4): 2015- 2024.
|
[13]
|
A. Periasamy, P. Skoglund, C. Noakes and R. Keller. An evalua- tion of two-photon excitation versus confocal and digital de- convolution fluorescence micros. Microscopy Research and Tech- nique, 1999, 47(3): 172-181.
|
[14]
|
杨云龙, 严佩敏, 陈艳. 多光子泵浦激光扫描显微镜[J]. 激光与光电子学进展, 2000, 6: 29-33.
|
[15]
|
G. Turrell, J. Corset. Raman microscopy development and applications. San Diego: Academic, 1996: 1-28.
|
[16]
|
J. X. Cheng, X. S. Xie. Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. Journal of Physical Chemisttry B, 2004, 108(3): 827-840.
|
[17]
|
J. X. Cheng, A. Volkmer and X. S. Xie. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. Journal of the Optical Society of America B, 2002, 19(6): 1363-1375.
|
[18]
|
E. O. Potma, C. L. Evans and X. S. Xie. Heterodyne coherent anti Stokes Raman scattering (CARS) imaging. Journal of Optical Letters, 2006, 31(2): 241-243.
|
[19]
|
B. Schwarzchild. Nobel prize goes to Zewail for developing femtochemistry. Journal of Physics Today, 1999, 52(12): 19-21.
|
[20]
|
W. S. Warren, H. Rabitz and M. Dahleh. Coherent control of quantum dynamics: The dream is alive. Science, 1993, 259(5101): 1581-1589.
|
[21]
|
A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Sey- fried, M. Strehle and G. Gerber. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science, 1998, 282(5390): 919-922.
|