|
[1]
|
章俊良, 蒋峰景. 燃料电池——原理关键材料和技术[M]. 上海: 上海交通大学出版社, 2014: 1-5.
|
|
[2]
|
TOYOTA, Fuel Cell Vehicles. http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html
|
|
[3]
|
Nie, Y., Li, L. and Wei, Z. (2015) Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chemical Society Reviews, 44, 2168-2201. [Google Scholar] [CrossRef]
|
|
[4]
|
Shao, M., Chang, Q., Dodelet, J.-P. and Chenitz, R. (2016) Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116, 3594-3657. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Strasser, P. and Kühl, S. (2016) Dealloyed Pt-Based Core-Shell Oxygen Reduction Electrocatalysts. Nano Energy, 29, 166-177. [Google Scholar] [CrossRef]
|
|
[6]
|
Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T. and Jónsson, H. (2004) Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108, 17886-17892. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F. and Nilsson, A. (2010) Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nature Chemistry, 2, 454-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Furukawa, S. and Komatsu, T. (2016) Intermetallic Compounds: Promising Inorganic Materials for Well-Structured and Electronically Modified Reaction Environments for Efficient Catalysis. ACS Catalysis, 7, 735-765. [Google Scholar] [CrossRef]
|
|
[9]
|
Luo, M., Sun, Y., Wang, L. and Guo, S. (2017) Tuning Multimetallic Ordered Intermetallic Nanocrystals for Efficient Energy Electrocatalysis. Advanced Energy Materials, 7, Article ID: 1602073. [Google Scholar] [CrossRef]
|
|
[10]
|
Frommen,C. and Rösner, H. (2004) Observation of Long-Period Superstructures in Chemically Synthesised CoPt Nanoparticles. Materials Letters, 58, 123-127. [Google Scholar] [CrossRef]
|
|
[11]
|
Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J. and Abruña, H.D. (2004) Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 126, 4043-4049. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A. (2000) Mono-disperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science, 287, 1989-1992. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kim, J., Lee, Y. and Sun, S. (2010) Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 132, 4996-4997. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, X., An, L., Wang, X., Li, F., Zou, R. and Xia, D. (2012) Supported Sub-5nm Pt-Fe Intermetallic Compounds for Electrocatalytic Application. Journal of Materials Chemistry, 22, 6047-6052. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, Q., Wu, L., Wu, G., Su, D., Lv, H., Zhang, S., Zhu, W., Casimir, A., Zhu, H., Mendoza-Garcia, A. and Sun, S. (2015) New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 15, 2468-2473. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Du, X.-X., He, Y., Wang, X.-X. and Wang, J.-N. (2016) Fi-ne-Grained and Fully Ordered Intermetallic PtFe Catalyst with Largely Enhanced Catalytic Activity and Durability. Energy & Environmental Science, 9, 2623-2632. [Google Scholar] [CrossRef]
|
|
[17]
|
Chung, D.-Y., Jun, S.-W., Yoon, G., Kwon, S.-G., Shin, D.Y., Seo, P., Yoo, J.-M., Shin, H., Chung, Y.-H., Kim, H., Mun, B.-S., Lee, K.-S., Lee, N.-S., Yoo, S.-J., Lim, D.-H., Kang, K., Sung, Y.-E. and Hyeon, T. (2015) Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 137, 15478-15485. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jung, C., Lee, C., Bang, K., Lim, J., Lee, H., Ryu, H.-J., Cho, E. and Lee, H.-M. (2017) Synthesis of Chemically Ordered Pt3Fe/C Intermetallic Electrocatalysts for Oxygen Reduction Reaction with Enhanced Activity and Durability via a Removable Carbon Coating. ACS Applied Materials & Interfaces, 9, 31806-31815. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
蔡业政, 骆明川, 王芳辉, 孙照楠, 朱红. 合成具有高氧还原反应催化活性的结构有序铂铁合金催化剂[J]. 电化学, 2016, 22(2): 185-191.
|
|
[20]
|
Lebedeva, M.V., Pierron-Bohnes, V., Goyhenex, C., Papaefthimiou, V., Zafeiratos, S., Nazmutdinov, R.R., Da Costa, V., Acosta, M., Zosiak, L., Kozubski, R., Muller, D. and Savinova, E.R. (2013) Effect of the Chemical Order on the Electrocatalytic Activity of Model PtCo Electrodes in the Oxygen Reduction Reaction. Electrochimica Acta, 108, 605-616. [Google Scholar] [CrossRef]
|
|
[21]
|
Xiong, Y., Xiao, L., Yang, Y., DiSalvo, F.J., Abruña, H.D. (2018) High-Loading Intermetallic Pt3Co/C Core-Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 30, 1532-1539. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, D., Xin, H.-L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J. and Abruña, H.D. (2013) Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Na-noparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Nature Materials, 12, 81-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cai, Y., Gao, P., Wang, F. and Zhu, H. (2017) Carbon Supported Chemi-cally Ordered Nanoparicles with Stable Pt Shell and Their Superior Catalysis toward the Oxygen Reduction Reaction. Electrochimica Acta, 245, 924-933. [Google Scholar] [CrossRef]
|
|
[24]
|
Jia, Q., Caldwell, K., Ramaker, D.E., Ziegelbauer, J.M., Liu, Z., Yu, Z., Trahan, M. and Mukerjee, S. (2014) In Situ Spectroscopic Evidence for Ordered Core–Ultrathin Shell Pt1Co1 Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of Physical Chemistry C, 118, 20496-20503. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, J., Sharma, S., Liu, X., Pan, Y.-T., Spendelow, J.S., Chi, M., Jia, Y., Zhang, P., Cullen, D.A., Xi, Z., Lin, H., Yin, Z., Shen, B., Muzzio, M., Yu, C., Kim, Y.S., Peterson, A.A., More, K.L., Zhu, H. and Sun, S. (2019) Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 3, 124-135. [Google Scholar] [CrossRef]
|
|
[26]
|
Hoshi, N., Nakamura, M. and Hitotsuyanagi, A. (2013) Active Sites for the Oxygen Reduction Reaction on the High Index Planes of Pt. Electrochimica Acta, 112, 899-904. [Google Scholar] [CrossRef]
|
|
[27]
|
Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X., Yao, J., Guo, J. and Huang, X. (2016) Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis. Nature Communications, 7, Article No. 11850. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yarlagadda, V., Carpenter, M.K., Moylan, T.E., Kukreja, R.S., Koestner, R., Gu, W., Thompson, L. and Kongkanand, A. (2018) Boosting Fuel Cell Performance with Accessible Carbon Mesopores. ACS Energy Letters, 3, 618-621. [Google Scholar] [CrossRef]
|
|
[29]
|
Guan, B.-Y., Yu, X.-Y., Wu, H.-B. and Lou, X.-W. (2017) Complex Nanostructures from Materials Based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 29, Article ID: 1703614. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, X.-X., Hwang, S., Pan, Y.-T., Chen, K., He, Y., Karakalos, S., Zhang, H., Spendelow, J.S., Su, D. and Wu, G. (2018) Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal-Organic Frameworks for Oxygen Reduction. Nano Letters, 18, 4163-4171. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chong, L., Wen, J., Kubal, J., Sen, F.G., Zou, J., Greeley, J., Chan, M., Barkholtz, H., Ding, W. and Liu, D.-J. (2018) Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science, 362, 1276-1281. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, D., Yu, Y., Xin, H.L., Hovden, R., Ercius, P., Mundy, J.A., Chen, H., Richard, J.H., Muller, D.A. and Disalvo, F.J. (2012) Tuning Oxygen Reduction Reaction Activity via Con-trollable Dealloying: A Model Study of Ordered Cu3Pt/C Intermetallic Nanocatalysts. Nano Letters, 12, 5230-5238. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, D., Yu, Y., Zhu, J., Liu, S., Muller, D.A. and Abruña, H.D. (2015) Morphology and Activity Tuning of Cu3Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Deal-loying. Nano Letters, 15, 1343-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hodnik, N., Jeyabharathi, C., Meier, J.C., Kostka, A., Phani, K.L., Recnik, A., Bele, M., Hocevar, S., Gaberscek, M. and Mayrhofer, K.J.J. (2014) Effect of Ordering of PtCu3 Nanoparticle Structure on the Activity and Stability for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 16, 13610-13615. [Google Scholar] [CrossRef]
|
|
[35]
|
Bu, L., Zhang, N., Guo, S., Zhang, X., Li, J., Yao, J., Wu, T., Lu, G., Ma, J.-Y., Su, D. and Huang, X. (2016) Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science, 354, 1410-1414. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bu, L., Shao, Q., B, E., Guo, J., Yao, J., Huang, X. (2017) PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 139, 9576-9582. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, S., Guo, S., Zhu, H., Su, D. and Sun, S. (2012) Struc-ture-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of American Chemistry Society, 134, 5060-5063. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhu, H., Cai, Y., Wang, F., Gao, P. and Cao, J. (2018) Scalable Preparation of the Chemically Ordered Pt-Fe-Au Nanocatalysts with High Catalytic Reactivity and Stability for Oxygen Reduction Reactions, ACS Applied Materials & Interfaces, 10, 22156-22166. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sasaki, K., Naohara, H., Choi, Y., Cai, Y., Chen, W.-F., Liu, P. and Adzic, R.R. (2012) Highly Stable Pt Monolayer on PdAu Nanoparticle Electrocatalysts for the Oxygen Reduction Re-action. Nature Communications, 3, Article No. 1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Arumugam, B., Tamaki, T. and Yamaguchi, T. (2015) Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 7, 16311-16321. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kuroki, H., Tamaki, T., Matsumoto, M., Arao, M., Kubobuchi, K., Imai, H. and Yamaguchi, T. (2016) Platinum-Iron-Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 55, 11458-11466. [Google Scholar] [CrossRef]
|
|
[42]
|
Tamaki, T., Minagawa, A., Arumugam, B., Kakade, B.A. and Yamaguchi, T. (2014) Highly Active and Durable Chemically Ordered Pt-Fe-Co Intermetallics as Cathode Catalysts of Membrane-Electrode Assemblies in Polymer Electrolyte Fuel Cells. Journal of Power Sources, 271, 346-353. [Google Scholar] [CrossRef]
|
|
[43]
|
Arumugam, B., Kakade, B., Tamaki, T., Arao, M., Imai, H. and Yamaguchi, T. (2014) Enhanced Activity and Durability for the Electroreduction of Oxygen at a Chemically Ordered Intermetallic PtFeCo Catalyst. RSC Advances, 4, 27510-27517. [Google Scholar] [CrossRef]
|