学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 9 No. 3 (May 2019)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
具有脉冲的无限时滞系统的持久性与全局吸引性
Permanence and Global Attractivity of an Impulsive In?nite Delay System
DOI:
10.12677/PM.2019.93050
,
PDF
,
,
,
被引量
作者:
张如月
,
李建利
:湖南师范大学数学系,湖南 长沙
关键词:
脉冲
;
时滞
;
持久
;
全局吸引性
;
Impulsive
;
Delay
;
Permanence
;
Global Attractivity
摘要:
该文研究了具有脉冲的无限时滞系统的持久性与全局吸引性。利用脉冲微积分方程不等式以及放缩技巧得到所构造的系统是持续生存的。构造合适的Lyapunov函数和一些分析技巧证明其全局吸引性,我们的结果推广和改进了相关文献的结果。
Abstract:
In this paper, we study a system with impulsive and infinite delay. By using the comparison theorem of impulsive differential equations and constructing some suitable Lyapunov functionals, we discuss the permanence and global attractivity of the model.
文章引用:
张如月, 李建利. 具有脉冲的无限时滞系统的持久性与全局吸引性[J]. 理论数学, 2019, 9(3): 377-385.
https://doi.org/10.12677/PM.2019.93050
参考文献
[1]
Kuang, Y. (1993) Delay Dierential Equations: With Applications in Population Dynamics. Academic Press, Boston.
[2]
Chen, F.D. and Shi, C.L. (2006) Dynamic Behavior of a Logistic Equation with Innite Delay. Acta Mathematicae Applicatae Sinica, 22, 313-324.
https://doi.org/10.1007/s10255-006-0307-6
[3]
Teng, Z.D. (2002) Permanence and Stability in Non-Autonomous Logistic Systems with Innite Delays. Dynamical Systems, 17, 187-202.
https://doi.org/10.1080/14689360110102312
[4]
He, M.X., Chen, F.D. and Li, Z. (2016) Permanence and Global Attractivity of an Impulsive Delay Logistic Model. Applied Mathematics Letters, 62, 92-100.
https://doi.org/10.1016/j.aml.2016.07.009
[5]
Lakshmikantham, V., Bainov, D.D. and Simeonov, P.S. (1989) Theory of Impulsive Dierential Equations. World Scientic, Singapore.
https://doi.org/10.1142/0906
[6]
de Oca, F.M. and Vivas, M. (2006) Extinction in a Two Dimensional Lotka-Volterra System with Innite Delay. Nonlinear Analysis: Real World Applications, 7, 1042-1047.
https://doi.org/10.1016/j.nonrwa.2005.09.005
投稿
为你推荐
友情链接
科研出版社
开放图书馆