具有脉冲的无限时滞系统的持久性与全局吸引性
Permanence and Global Attractivity of an Impulsive In?nite Delay System
DOI: 10.12677/PM.2019.93050, PDF,   
作者: 张如月, 李建利:湖南师范大学数学系,湖南 长沙
关键词: 脉冲时滞持久全局吸引性Impulsive Delay Permanence Global Attractivity
摘要: 该文研究了具有脉冲的无限时滞系统的持久性与全局吸引性。利用脉冲微积分方程不等式以及放缩技巧得到所构造的系统是持续生存的。构造合适的Lyapunov函数和一些分析技巧证明其全局吸引性,我们的结果推广和改进了相关文献的结果。
Abstract: In this paper, we study a system with impulsive and infinite delay. By using the comparison theorem of impulsive differential equations and constructing some suitable Lyapunov functionals, we discuss the permanence and global attractivity of the model.
文章引用:张如月, 李建利. 具有脉冲的无限时滞系统的持久性与全局吸引性[J]. 理论数学, 2019, 9(3): 377-385. https://doi.org/10.12677/PM.2019.93050

参考文献

[1] Kuang, Y. (1993) Delay Di erential Equations: With Applications in Population Dynamics. Academic Press, Boston.
[2] Chen, F.D. and Shi, C.L. (2006) Dynamic Behavior of a Logistic Equation with In nite Delay. Acta Mathematicae Applicatae Sinica, 22, 313-324.
https://doi.org/10.1007/s10255-006-0307-6
[3] Teng, Z.D. (2002) Permanence and Stability in Non-Autonomous Logistic Systems with In nite Delays. Dynamical Systems, 17, 187-202.
https://doi.org/10.1080/14689360110102312
[4] He, M.X., Chen, F.D. and Li, Z. (2016) Permanence and Global Attractivity of an Impulsive Delay Logistic Model. Applied Mathematics Letters, 62, 92-100.
https://doi.org/10.1016/j.aml.2016.07.009
[5] Lakshmikantham, V., Bainov, D.D. and Simeonov, P.S. (1989) Theory of Impulsive Di erential Equations. World Scienti c, Singapore.
https://doi.org/10.1142/0906
[6] de Oca, F.M. and Vivas, M. (2006) Extinction in a Two Dimensional Lotka-Volterra System with In nite Delay. Nonlinear Analysis: Real World Applications, 7, 1042-1047.
https://doi.org/10.1016/j.nonrwa.2005.09.005