|
[1]
|
Herrp, K. (2010) Reimagining Alzheimer’s Disease-Anage-Based Hypothesis. Journal of Neuroscience, 30, 16755-16762. [Google Scholar] [CrossRef]
|
|
[2]
|
Mann, D.M. (1989) The Pathogenesis and Progression of the Pathological Changes of Alzheimer’s Disease. Annals of Medicine, 21, 133-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
刘晓杰, 杨威, 祁金顺. 氧化应激与阿尔茨海默病[J]. 生理学报, 2012, 64(1): 87-95.
|
|
[4]
|
刘菊. 阿尔茨海默病发病机制研究进展[J]. 黔南民族医专学报, 2018, 31(4): 261-263.
|
|
[5]
|
赵丽波, 付宏娟, 张健莉. 阿尔茨海默病发生机制的研究进展[J]. 中国老年学杂志, 2011, 31(24): 4997-4998.
|
|
[6]
|
Zhou, L., McInnes, J., Wierda, K., et al. (2017) Tau Association with Synaptic Vesicles Causes Pre-synaptic Dysfunction. Nature Communications, 8, Article No. 15295. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wyss-Coray, T. and Rogers, J. (2012) Inflammation in Alzheimer Disease—A Brief Review of the Basic Science and Clinical Literature. Cold Spring Harbor Perspectives in Medicine, 2, a006346. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Weinreb, O., Mandel, S., Bar-Am, O. and Amit, T. (2011) Iron Chelating Backbone Coupled with Monoamine Oxidase Inhibitory Moiety as Novel Pluripotential Therapeutic Agents for Alzheimer’s Disease: A Tribute to Moussa Youdim. Journal of Neural Transmission (Vienna), 118, 479-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Combs, C., Karlo, J., Kao, S., et al. (2001) β-Amyloid Stimulation of Microglia and Monocytes Results in TNF α-Dependent Expression of Inducible Nitric Oxide Synthase and Neuronal Apoptosis. Journal of Neuroscience, 21, 1179-1188. [Google Scholar] [CrossRef]
|
|
[10]
|
Bianchetti, A., et al. (2006) Pharmacological Treatment of AD. Aging Clinical and Experimental Research, 18, 158-162. [Google Scholar] [CrossRef]
|
|
[11]
|
Qin, J., Li, R., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tannock, G.W. (1998) Studies of the Intestinal Microflora Prerequisite for the Development of Probiotics. International Dairy Journal, 8, 527-533. [Google Scholar] [CrossRef]
|
|
[13]
|
Mitsuoka, T. (1992) Intestinal Flora and Aging. Nutrition Reviews, 50, 438-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ran, L., Chen, Z., Fu, P., et al. (1999) A Survey on the Criteria of Intestinal Flora of 184 Healthy People in Beijing. Chinese Journal of Microecology, 11, 10-12. (In Chi-nese)
|
|
[15]
|
Soldavini, J. and Kaunitz, J.D. (2013) Pathobiology and Potential Therapeutic Value of Intestinal Short-Chain Fatty Acids in Gut Inflammation and Obesity. Digestive Diseases and Sciences, 58, 2756-2766. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
许爱梅, 张方华, 商永芳. 肠道菌群与代谢疾病关系的研究进展[J]. 齐鲁医学杂志, 2017, 32(2): 235-237.
|
|
[17]
|
Romijn, J.A., Corssmit, E.P., Havekes, L.M. and Pijl, H. (2008) Gut-Brain Axis. Current Opinion in Clinical Nutrition & Metabolic Care, 11, 518-521. [Google Scholar] [CrossRef]
|
|
[18]
|
Cummings, D.E. and Overduin, J. (2007) Gastrointestinal Regulation of Food Intake. Journal of Clinical Investigation, 117, 13-23. [Google Scholar] [CrossRef]
|
|
[19]
|
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. and Dinan, T.G. (2008) The Probiotic Bifidobacteria Infantis: An Assessment of Potential Antidepressant Properties in the Rat. Journal of Psychiatric Research, 43, 164-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Santos, J., Yang, P.C., Soderholm, J.D., Benjamin, M. and Perdue, M.H. (2001) Role of Mast Cells in Chronic Stress Induced Colonic Epithelial Barrier Dysfunction in the Rat. Gut, 48, 630-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Barajon, I., Serrao, G., Arnaboldi, F., Opizzi, E., Ripamonti, G., Balsari, A. and Rumio, C. (2009) Toll-Like Receptors 3, 4, and 7 Are Expressed in the Enteric Nervous System and Dorsal Root Ganglia. Journal of Histochemistry & Cytochemistry, 57, 1013-1023. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Brun, P., Giron, M.C., Qesari, M., Porzionato, A., Caputi, V., Zop-pellaro, C., Banzato, S., Grillo, A.R., Spagnol, L., De Caro, R., Pizzuti, D., Barbieri, V., Rosato, A., Sturniolo, G.C., Martines, D., Zaninotto, G., Palu, G. and Castagliuolo, I. (2013) Toll-Like Receptor 2 Regulates Intestinal Inflammation by Controlling Integrity of the Enteric Nervous System. Gastroenterology, 145, 1323-1333. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kunze, W.A., Mao, Y.K., Wang, B., Huizinga, J.D., Ma, X., Forsythe, P. and Bienenstock, J. (2009) Lactobacillus reuteri Enhances Excitability of Colonic AH Neurons by Inhib-iting Calcium-Dependent Potassium Channel Opening. Journal of Cellular and Molecular Medicine, 13, 2261-2270. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chiu, I.M., Heesters, B.A., Ghasemlou, N., Von Hehn, C.A., Zhao, F., Tran, J., Wainger, B., Strominger, A., Muralidharan, S., Horswill, A.R., Wardenburg, J.B., Hwang, S.W., Carroll, M.C. and Woolf, C.J. (2013) Bacteria Activate Sensory Neurons That Modulate Pain and Inflammation. Nature, 501, 52-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sudo, N. (2012) Role of Microbiome in Regulating the HPA Axis and Its Relevance to Allergy. Chemical Immunology and Allergy, 98, 163-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ruddick, J.P., Evans, A.K., Nutt, D.J., Lightman, S.L., Rook, G.A. and Lowry, C.A. (2006) Tryptophan Metabolism in the Central Nervous System: Medical Implications. Expert Reviews in Molecular Medicine, 8, 1-27. [Google Scholar] [CrossRef]
|
|
[27]
|
Berer, K. and Krishnamoorthy, G. (2012) Commensal Gut Flora and Brain Autoimmunity: A Love or Hate Affair? Acta Neuropathologica, 123, 639-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
赵浩伊, 王迪, 张玉凤, 吴琼. 肠道菌群异常与阿尔茨海默病发生相关性的研究进展[J]. 神经解剖学杂志, 2017, 33(4): 476-480.
|
|
[29]
|
Fox, M., Knapp, L.A., Andrews, P.W. and Fincher, C.L. (2013) Hygiene and the World Distribution of Alzheimer’s Disease: Epidemiological Evidence for a Re-lationship between Microbial Environment and Age-Adjusted Disease Burden. Evolution, Medicine, and Public Health, 2013, 173-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ziegler-Graham, K., Brookmeyer, R., Johnson, E. and Arrighi, H.M. (2008) Worldwide Variation in the Doubling Time of Alzheimer’s Disease Incidence Rates. Alzheimer’s Dementia, 4, 316-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
杨璐. 粪菌移植对阿尔茨海默病小鼠的影响及分子机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2018: 1-74.
|
|
[32]
|
Pistollato, F., Sumalla Cano, S., Elio, I., et al. (2016) Role of Gut Microbota and Nutrients in Amyloid Formation and Pathogenesis of Alzheimer Disease. Nutrition Reviews, 74, 624-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lei, Y.M.K., Nair, L. and Alegre, M.L. (2015) The Interplay between the Intestinal Microbiota and the Immune System. Clinics and Research in Hepatology and Gastroenterology, 39, 9-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhao, Y. and Lukiw, W.J. (2015) Microbi-ome-Generated Amyloid and Potential Impact on Amyloidogenesis in Alzheimer’s Disease (AD). Journal of Nature and Science, 1, pii: e138.
|
|
[35]
|
Haque, T.R. and Barritt, A.S. (2016) Intestinal Microbiota in Liver Disease. Best Practice & Research: Clinical Gastroenterology, 30, 133-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wall, R., Cryan, J.F., Ross, R.P., et al. (2014) Bacterial Neuroactive Compounds Produced by Psychobiotics. Advances in Experimental Medicine and Biology, 817, 221-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yan, M., Han, J., Xu, X., et al. (2016) GSY, a Novel Glucansucrase from Leuconostoc Mesenteroides, Mediates the Formation of Cell Aggregates in Response to Oxidative Stress. Scientific Reports, 6, Article ID: 38122.
|
|
[38]
|
Savignac, H.M., Couch, Y., Stratford, M., et al. (2016) Prebiotic Administration Normalizes Lipopolysaccharide (LPS)-Induced Anxiety and Cortical 5-HT2A Receptor and IL1-β Levels in Male Mice. Brain, Behavior, and Immunity, 52, 120-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jiang, T., Yu, J.T., Zhu, X.C., et al. (2014) Temsirolimus Attenuates Tauopathy in Vitro and in Vivo by Targeting Tau Hyperphosphorylation and Autophagic Clearance. Neuropharmacology, 85, 121-130.
|
|
[40]
|
Ma, X.H., Duan, W.J., Mo, Y.S., et al. (2018) Neuroprotective Effect of Paeoniflorin on Okadaic Acid-Induced Tau Hyperphosphorylation via Calpain/Akt/GSK-3 Beta Pathway in SH-SY5Y Cells. Brain Research, 1690, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Al-Asmakh, M. and Hedin, L. (2015) Microbiota and the Control of Blood Tissue Barriers. Tissue Barriers, 3, e1039691. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhang, R., Miller, R.G., Gascon, R., et al. (2009) Circulating Endotoxin and Systemic Immune Activation in Sporadic Amyotrophic Lateral Sclerosis (sALS). Journal of Neu-roimmunology, 206, 121-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Jaitin, D. (2015) Host Microbiota Constantly Control Matu-ration and Function of Microglia in the CNS. Nature Neuroscience, 18, 965-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Woo, J.Y., Gu, W., Kim, K.A., Jang, S.E., Han, M.J. and Kim, D.H. (2014) Anaerobe Lactobacillus pentosus var. plantarum C29 Ameliorates Memory Impairment and Inflammaging in a D-Galactose-Induced Accelerated Aging Mouse Model. Anaerobe, 27, 22-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Divyashri, G., Krishna, G., Muralidhara and Prapulla, S.G. (2015) Probiotic Attributes, Antioxidant, Anti-Inflammatory and Neuromodulatory Effects of Enterococcus faecium CFR 3003: In Vitro and in Vivo Evidence. Journal of Medical Microbiology, 64, 1527-1540. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Musa, N.H., Mani, V., Lim, S.M., Vidyadaran, S., Abdul Majeed, A.B. and Ramasamy, K. (2017) Lactobacilli-Fermented Cow’s Milk Attenuated Lipopolysaccharide-Induced Neuroin-flammation and Memory Impairment in Vitro and in Vivo. Journal of Dairy Research, 84, 488-495. [Google Scholar] [CrossRef]
|
|
[47]
|
Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, 256. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., et al. (2015) Administration of Lactobacillus helveticus NS8 Improves Behavioral, Cognitive, and Biochemical Aberrations Caused by Chronic Restraint Stress. Neuroscience, 310, 561-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
江春梅. 粪菌移植改善阿尔茨海默病小鼠学习记忆能力的实验研究[D]: [硕士学位论文]. 湛江: 广东医科大学, 2017: 1-81.
|