不含相邻短圈的平面图的 (3, 1)*-可选性
(3, 1)*-Choosability of Planar Graphs without Adjacent Short Cycles
                  
              
    
                  
                    
                    摘要: 
	图 G的一个颜色列表配置 L是指给 G中的每个顶点 v都分配一个可用色集 L(v)。 如果在映射 ϕ下对任意 v ∈ V (G)均满足 ϕ(v) ∈ L(v),使得在 v的邻点中至多有 d个顶点的颜色为 ϕ(v),那 么我们称 G是 (L, d)∗-可染的。 如果对任意颜色列表配置 L = {L(v)||L(v)| ≥ k, v ∈ V (G)}, G都 是 (L, d)∗-可染的,那么我们就称 G 是 (k, d)∗-可选的。 Xu 和Zhang 猜想:不含相邻 3-圈的平 面图是 (3, 1)∗-可选的。 在本文中,我们将证明不含相邻 k-圈的平面图是 (3, 1)∗-可选的,其中k ∈ {3, 4, 5}。
                 
              
                
                    Abstract: 
For a graph G, a list assignment is a function L that assigns a list L(v) of colors to each vertex v ∈ V (G). An (L, d)-coloring is a mapping ϕ that assigns a color ϕ(v) ∈ L(v) to each v ∈ V (G) so that at most d neighbors of v receive the color ϕ(v). A graph G is said to be (k, d)∗-choosable if it admits an (L, d)∗-coloring for every list assignment L with|L(v)| ≥ k for all v ∈ V (G). Xu and Zhang conjectured that every planar graph without adjacent 3-cycles is (3, 1)∗-choosable. In this paper, we prove that every planar graph without adjacent k-cycles, k = 3, 4, 5, is (3, 1)∗-choosable. 
	
	 
                
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | Sˇkrekovski, R. (1999) List Improper Coloring of Planar Graphs. Combinatorics, Probability and Computing, 8, 293-299. https://doi.org/10.1017/S0963548399003752
 | 
                     
                                
                                    
                                        | [2] | Eaton, N. and Hull, T. (1999) Defective List Colorings of Planar Graphs. Bulletin of the Institute of Combinatorics and Its Applications, 25, 79-87. | 
                     
                                
                                    
                                        | [3] | Cowen, L.J., Cowen, R.H. and Woodall, D.R. (1986) Defective Colorings of Graphs in Surfaces: Partitions into Subgraphs of Bounded Valency. Journal of Graph Theory, 10, 187-195. https://doi.org/10.1002/jgt.3190100207
 | 
                     
                                
                                    
                                        | [4] | Sˇkrekovski, R. (1999) Gr¨ostzsch-Type Theorem for List Colorings with Impropriety One. Com- binatorics, Probability and Computing, 8, 493-507. https://doi.org/10.1017/S096354839900396X
 | 
                     
                                
                                    
                                        | [5] | Lih, K.W. (2001) A Note on List Improper Coloring Planar Graphs. Applied Mathematics Letters,  14,  269-273. https://doi.org/10.1016/S0893-9659(00)00147-6
 | 
                     
                                
                                    
                                        | [6] | Dong, W. and Xu, B. (2009) A Note on List Improper Coloring of Plane Graphs. Discrete Applied Mathematics, 157, 433-436. https://doi.org/10.1016/j.dam.2008.06.023
 | 
                     
                                
                                    
                                        | [7] | Wang, Y. and Xu, L. (2013) Improper Choosability of Planar Graphs without 4-Cycles. SIAM Journal on Discrete Mathematics, 27, 2029-2037. https://doi.org/10.1137/120885140
 | 
                     
                                
                                    
                                        | [8] | Xu, B. and Zhang, H. (2007) Every Toroidal Graphs without Adjacent Triangles Is (4, 1)∗- Choosable. Discrete Applied Mathematics, 155, 74-78. https://doi.org/10.1016/j.dam.2006.04.042
 |