|
[1]
|
Gan, Q., Zhao, X., Xiao, Y., Zhao, D. and Cao, M. (2014) A Mild Route to Mesoporous Mo2C-C Hybrid Nanospheres for High Performance Lithium-Ion Batteries. Nanoscale, 6, 6151-6157. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D. (2011) Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy & Environmental Science, 4, 3243-3262. [Google Scholar] [CrossRef]
|
|
[3]
|
Lu, L., Han, X., Li, J., Hua, J. and Ouyang, M. (2013) A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. Journal of Power Sources, 226, 272-288. [Google Scholar] [CrossRef]
|
|
[4]
|
Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Polzot, P., Laruelle, S., Grugeon, S., Dupont, L. and Tarascon, J.-M. (2000) Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature, 407, 496-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Luo, W., Hu, X., Sun, Y. and Huang, Y. (2011) Electrospinning of Carbon-Coated MoO2 Nanofibers with Enhanced Lithium-Storage Properties. Physical Chemistry Chemical Physics, 13, 16735-16740.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zeng, L., Zheng, C., Deng, C., Ding, X. and Wei, M. (2013) MoO2-Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5, 2182-2187.
[Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hu, X., Zhang, W., Liu, X., Mei, Y. and Huang, Y. (2015) Nanostructured Mo-Based Electrode Materials for Electrochemical Energy Storage. Chemical Society Reviews, 44, 2376-2404. [Google Scholar] [CrossRef]
|
|
[9]
|
Ying, W., Huang, Z. and Wang, Y. (2015) A New Approach to Synthesize MoO2@C for High-Rate Lithium Ion Batteries. Journal of Materials Chemistry A, 3, 21314-21320. [Google Scholar] [CrossRef]
|
|
[10]
|
Sun, Y., Hu, X., Luo, W. and Huang, Y. (2011) Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 5, 7100-7107.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bruce, P.G., Scrosati, B. and Trarscon, J.M. (2008) Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 47, 2930-2946. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hwang, J., Min, D., Yoon, D., Chang, W. and Kim, J. (2016) Liquid Carbon Dioxide-Based Coating of a Uniform Carbon Layer on Hierarchical Porous MoO2 Microspheres and Assessment of Their Electrochemical Performance. Chemical Engineering Journal, 290, 335-345. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhou, L., Wu, H.B., Wang, Z. and Lou, X.W. (2011) Interconnected MoO2 Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 3, 4853-4857.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, Y., Zhang, H., Ouyang, P. and Li, Z. (2013) One-Pot Hydrothermal Synthesized MoO2 with High Reversible Capacity for Anode Application in Lithium Ion Battery. Electrochimica Acta, 102, 429-435.
[Google Scholar] [CrossRef]
|
|
[15]
|
Sun, Y., Hu, X., Luo, W. and Huang, Y. (2012) Ultrafine MoO2 Nanoparticles Embedded in a Carbon Matrix as a High-Capacity and Long-Life Anode for Lithium-Ion Batteries. Journal of Materials Chemistry, 22, 425-431.
[Google Scholar] [CrossRef]
|
|
[16]
|
Guo, B., Fang, X., Li, B., et al. (2012) Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods. Chemistry of Materials, 24, 457-463. [Google Scholar] [CrossRef]
|
|
[17]
|
Guo, C., Sun, X., Kuang, X., et al. (2019) Amorphous Co-Doped MoOx Nanospheres with a Core-Shell Structure toward an Effective Oxygen Evolution Reaction. Journal of Materials Chemistry A, 7, 1005-1012.
[Google Scholar] [CrossRef]
|
|
[18]
|
Zhao, X., Cao, M., Liu, B., Tian, Y. and Hu, C. (2012) Interconnected Core-Shell MoO2 Microcapsules with Nanorod-Assembled Shells as High-Performance Lithium-Ion Battery Anodes. Journal of Materials Chemistry, 22, 13334-13340.
[Google Scholar] [CrossRef]
|
|
[19]
|
Bhaskar, A., Deepa, M. and Narasinga Rao, T. (2013) MoO2/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 5, 2555-2566.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Guo, L. and Wang, Y. (2015) Standing Carbon-Coated Molybdenum Dioxide Nanosheets on Graphene: Morphology Evolution and Lithium Ion Storage Properties. Journal of Materials Chemistry A, 3, 4706-4715.
[Google Scholar] [CrossRef]
|
|
[21]
|
Xu, Y., Yi, R., Yuan, B., et al. (2012) High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries. The Journal of Physical Chemistry Letters, 3, 309-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tang, Q., Shan, Z., Wang, L. and Qin, X. (2012) MoO2-Graphene Nanocomposite as Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 79, 148-153. [Google Scholar] [CrossRef]
|
|
[23]
|
Huang, Z.X., Wang, Y., Zhu, Y.G., et al. (2014) 3D Graphene Supported MoO2 for High Performance Binder-Free Lithium Ion Battery. Nanoscale, 6, 9839-9845. [Google Scholar] [CrossRef]
|
|
[24]
|
Dahn, J.R. and Mckinnon, W.R. (1987) Structure and Electrochemistry of LixMoO2. Solid State Ionics, 23, 1-7.
[Google Scholar] [CrossRef]
|