|
[1]
|
Smith, A., Bahl, C.R., Bjørk, R., Engelbrecht, K., Nielsen, K.K. and Pryds, N. (2012) Materials Challenges for High Performance Magnetocaloric Refrigeration Devices. Advanced Energy Materials, 2, 1288-1318. [Google Scholar] [CrossRef]
|
|
[2]
|
GschneidnerJr, K.A., Pecharsky, V.K. and Tsokol, A.O. (2005) Recent Developments in Magnetocaloric Materials. Reports on Progress in Physics, 68, 1479. [Google Scholar] [CrossRef]
|
|
[3]
|
Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W. and Cheng, Z.H. (2009) Recent Progress in Exploring Magnetocaloric Materials. Advanced Materials, 21, 4545-4564. [Google Scholar] [CrossRef]
|
|
[4]
|
Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P. (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 23, 821-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D. and Gutfleisch, O. (2012) Giant Magnetocaloric Effect Driven by Structural Transitions. Nature Materials, 11, 620. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zheng, W.G., Cui, Y., Chen, F.H., Shi, Y.G. and Shi, D.N. (2018) Magnetocaloric Effect in Nd (Co0.8Fe0.2)2 Laves Compound with Wide Operating Temperature. Journal of Magnetism and Magnetic Materials, 460, 137-140. [Google Scholar] [CrossRef]
|
|
[7]
|
Ma, S., Cui, W.B., Li, D., Sun, N.K., Geng, D.Y., Jiang, X. and Zhang, Z.D. (2008) Large Cryogenic Magnetocaloric Effect of DyCo2 Nanoparticles without Encapsulation. Applied Physics Letters, 92, Article ID: 173113. [Google Scholar] [CrossRef]
|
|
[8]
|
Herrero-Albillos, J., Bartolomé, F., García, L.M., Casanova, F., Labarta, A. and Batlle, X. (2006) Nature and Entropy Content of the Ordering Transitions in RCo2. Physical Review B, 73, Article ID: 134410. [Google Scholar] [CrossRef]
|
|
[9]
|
Singh, N.K., Tripathy, S.K., Banerjee, D., Tomy, C.V., Suresh, K.G. and Nigam, A.K. (2004) Effect of Si Substitution on the Magnetic and Magnetocaloric Properties of ErCo2. Journal of Applied Physics, 95, 6678-6680. [Google Scholar] [CrossRef]
|
|
[10]
|
Burzo, E., Pop, I.G. and Kozlenko, D.N. (2010) Magnetic and Magnetocaloric Properties of Some Ferrimagnetic Compounds. Journal of Optoelectronics and Advanced Materials, 12, 1105. [Google Scholar] [CrossRef]
|
|
[11]
|
Dunhui, W., Shaolong, T., Songling, H., Zhenghua, S., Zhida, H. and Youwei, D. (2003) The Origin of the Large Magnetocaloric Effect in RCo2 (R = Er, Ho and Dy). Journal of Alloys and Compounds, 360, 11-13. [Google Scholar] [CrossRef]
|
|
[12]
|
Han, Z., Hua, Z., Wang, D., Zhang, C., Gu, B. and Du, Y. (2006) Magnetic Properties and Magnetocaloric Effect in Dy (Co1−xFex)2 Alloys. Journal of Magnetism and Magnetic Materials, 302, 109-112. [Google Scholar] [CrossRef]
|
|
[13]
|
Hu, F., Shen, F., Hao, J., Liu, Y., Wang, J., Sun, J. and Shen, B. (2018) Negative Thermal Expansion in the Materials with Giant Magnetocaloric Effect. Frontiers in Chemistry, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Balli, M., Fruchart, D. and Gignoux, D. (2011) Magnetic Behaviour and Experimental Study of the Magnetocaloric Effect in the Pseudobinary Laves Phase Er1−xDyxCo2. Journal of Alloys and Compounds, 509, 3907-3912. [Google Scholar] [CrossRef]
|
|
[15]
|
Gratz, E. and Markosyan, A.S. (2001) Physical Properties of RCo2 Laves Phases. Journal of Physics: Condensed Matter, 13, R385. [Google Scholar] [CrossRef]
|
|
[16]
|
Shi, Y.G., Xu, L.S., Zhou, X.G., Chen, Z.Y., Zheng, T.F. and Shi, D.N. (2013) Magnetostructural Phase Transition in Ga-Doped MnNiGe Compounds. Physica Status Solidi (a), 210, 2575-2578. [Google Scholar] [CrossRef]
|
|
[17]
|
Chaaba, I., Othmani, S., Haj-Khlifa, S., de Rango, P., Fruchart, D., Cheikhrouhou-Koubaa, W. and Cheikhrouhou, A. (2017) Magnetic and Magnetocaloric Properties of Er(Co1−xFex)2 Intermetallic Compounds. Journal of Magnetism and Magnetic Materials, 439, 269-276. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, J., He, C., Zhang, M.X. and Yan, A.R. (2016) A Systematic Study of the Microstructure, Phase Formation and Magnetocaloric Properties in Off-Stoichiometric La-Fe-Si Alloys. Acta Materialia, 118, 44-53. [Google Scholar] [CrossRef]
|
|
[19]
|
Slater, J.C. (1964) Atomic Radii in Crystals. The Journal of Chemical Physics, 41, 3199-3204. [Google Scholar] [CrossRef]
|
|
[20]
|
Rietveld, H. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of applied Crystallography, 2, 65-71. [Google Scholar] [CrossRef]
|
|
[21]
|
Fujita, A., Akamatsu, Y. and Fukamichi, K. (1999) Itinerant Electron Metamagnetic Transition in La(FexSi1−x)13 Intermetallic Compounds. Journal of Applied Physics, 85, 4756-4758. [Google Scholar] [CrossRef]
|
|
[22]
|
王冬梅, 松林, 王耀辉, 等. MnFeP0.63Ge0.12Si0.25Bx (x = 0, 0.01, 0.02, 0.03)化合物的磁热效应[J]. 金属学报, 2011, 47(3): 344-348.
|
|
[23]
|
Zheng, T.F., Shi, Y.G., Hu, C.C., Fan, J.Y., Shi, D.N., Tang, S.L. and Du, Y.W. (2012) Magnetocaloric Effect and Transition Order of Mn5Ge3 Ribbons. Journal of Magnetism and Magnetic Materials, 324, 4102-4105. [Google Scholar] [CrossRef]
|
|
[24]
|
Inoue, J. and Shimizu, M. (1988) First- and Second-Order Magnetic Phase Transitions in (RY) Co2 and R(Co-Al)2 (R = Heavy Rare-Earth Element) Compounds. Journal of Physics F: Metal Physics, 18, 2487. [Google Scholar] [CrossRef]
|
|
[25]
|
Brommer, P.E. (1989) A Generalization of the Inoue-Shimizu Model. Physica B: Condensed Matter, 154, 197-202. [Google Scholar] [CrossRef]
|
|
[26]
|
Gschneidner Jr., K.A. and Pecharsky, V.K. (2000) Magnetocaloric Materials. Annual Review of Materials Science, 30, 387-429. [Google Scholar] [CrossRef]
|