| [1] | Lang, H., Mertens, T. and Gerlack, K.L. (1989) Re Implantation Homologous Cultured Osteoblast for Improvement of Bone Regeneration. An Animal Study. International Journal of Oral and Maxillofacial Surgery, 18, 244-248. https://doi.org/10.1016/S0901-5027(89)80064-5
 | 
                     
                                
                                    
                                        | [2] | Wang, Q.T., Zhang, Y.M., Hu, N.S., et al. (2004) Micro-structure Analysis of Fractured Ti Alloy Implant. Rare Metal Materials and Engineering, 33, 442-444. | 
                     
                                
                                    
                                        | [3] | Wen, C.E., Mabuchi, M., Yamada, Y., et al. (2001) Processing of Bio-Compatible Porous Ti and Mg. Scripta Materialia, 45, 1147-1153. https://doi.org/10.1016/S1359-6462(01)01132-0
 | 
                     
                                
                                    
                                        | [4] | 陈斌, 彭向和, 范镜泓. 生物自然复合材料的结构特征及仿生复合材料的研究[J]. 复合材料学报, 2000, 17(3): 59-62. | 
                     
                                
                                    
                                        | [5] | Kikuchi, M., Matsumoto, H.N., Yamada, T., et al. (2004) Glutaraldehyde Cross-Linked Hydroxyapatite/Collagen Self-Organized Nanocomposites. Biomaterials, 25, 63-69. https://doi.org/10.1016/S0142-9612(03)00472-1
 | 
                     
                                
                                    
                                        | [6] | Yasunaga, T., Matsusue, Y., Shikinami, Y., et al. (2015) Bonding Behavior of Ultrahigh Strength Unsintered Hydroxyapatite Particles/Poly(L-lactide) Composites to Surface of Tibial Cortex in Rabbits. Journal of Biomedical Materials Research, 47, 412-419. https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<412::AID-JBM17>3.0.CO;2-B
 | 
                     
                                
                                    
                                        | [7] | Thein-Han, W.W. and Misra, R.D. (2009) Biomimetic Chitosan-Nanohydroxyapatite Composite Scaffolds for Bone Tissue Engineering. Acta Biomaterialia, 5, 1182-1197. https://doi.org/10.1016/j.actbio.2008.11.025
 | 
                     
                                
                                    
                                        | [8] | Gil, E.S., Frankowski, D.J., Hudson, S.M., et al. (2007) Multiporous Silk Fibroin Membranes from Solvent-Crystallized Silk Fibroin/Gelatin Blends: Effects of Blend and Solvent Composition. Materials Science and Engineering: C, 27, 426-431. https://doi.org/10.1016/j.msec.2006.05.017
 | 
                     
                                
                                    
                                        | [9] | Kundua, B., Rajkhowa, R., Kundu, S.C., et al. (2013) Silk Fibroin Biomaterials for Tissue Regenerations. Advanced Drug Delivery Reviews, 65, 457-470. https://doi.org/10.1016/j.addr.2012.09.043
 | 
                     
                                
                                    
                                        | [10] | Pooyan, P., Tannenbaum, R. and Garmestani, H. (2012) Mechanical Behavior of a Cellulose-Reinforced Scaffold in Vascular Tissue Engineering, Journal of the Mechanical Behavior of Biomedical Materials, 7, 50-59. https://doi.org/10.1016/j.jmbbm.2011.09.009
 | 
                     
                                
                                    
                                        | [11] | Kim, U.J., Park, J., Li, C., Jin, H.J., et al. (2004) Structure and Properties of Silk Hydrogels. Biomacromolecules, 5, 786-792. https://doi.org/10.1021/bm0345460
 | 
                     
                                
                                    
                                        | [12] | Yunoki, S., Ikoma, T., Monkawa, A., et al. (2006) Control of Pore Structure and Mechanical Property in Hydroxyapatite Scaffolds for Bone Tissue Engineering. Materials Letters, 60, 999-1002. https://doi.org/10.1016/j.matlet.2005.10.064
 | 
                     
                                
                                    
                                        | [13] | Wahl, D.A., Sachlos, E., Liu, C., et al. (2007) Con-trolling the Processing of Collagen-Hydroxyapatite Scaffolds for Bone Tissue Engineering. Journal of Materials Science: Materials in Medicine, 18, 201-209. https://doi.org/10.1007/s10856-006-0682-9
 | 
                     
                                
                                    
                                        | [14] | 贺超良, 汤朝晖, 田华雨, 等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013, 52(6): 722-732. | 
                     
                                
                                    
                                        | [15] | Leong, K.F., Cheah, C.M. and Chua, C.K. (2003) Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials, 24, 2363-2378. https://doi.org/10.1016/S0142-9612(03)00030-9
 | 
                     
                                
                                    
                                        | [16] | Kim, U.-J., Park, J., Kim, H.J., et al. (2005) Three-Dimensional Aqueous-Derived Biomaterial Scaffolds from Silk Fibroin. Biomaterials, 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
 | 
                     
                                
                                    
                                        | [17] | Wang, Y.Z., Rudym, D.D., Walsh, A., et al. (2008) In Vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds. Biomaterials, 29, 3415-3428. https://doi.org/10.1016/j.biomaterials.2008.05.002
 | 
                     
                                
                                    
                                        | [18] | Jones, J.R., Ahir, S. and Hench, L.L. (2004) Large-Scale Pro-duction of 3D Bioactive Glass Macroporous Scaffolds for Tissue Engineering. Journal of Sol-Gel Science and Tech-nology, 29, 179-188. https://doi.org/10.1023/B:JSST.0000023848.96123.8e
 | 
                     
                                
                                    
                                        | [19] | 姚菊明, 魏克民, 励丽, 等. 桑蚕丝素蛋白初始结构对其矿化作用的影响[J]. 化学学报, 2007, 65(7): 635-639. | 
                     
                                
                                    
                                        | [20] | Ping, Z., Xun, X., Knight, D.P., et al. (2004) Effects of PH and Calcium Ions on the Conformational Transitions in Silk Fibroin Using 2D Roman Correlation Spectroscopy and C-13 Solid-State NMR. Biochemistry, 43, 11302-11311. https://doi.org/10.1021/bi049344i
 | 
                     
                                
                                    
                                        | [21] | 陆旋, 朱正华. 家蚕丝素蛋白铜元素螯合物的制备及其对动物生理影响研究[J]. 蚕桑通报, 2005, 36(3): 16-20. | 
                     
                                
                                    
                                        | [22] | 江捍平, 王大平, 阮建明, 等. 纳米羟基磷灰石人工骨的毒性与细胞相容性实验研究[J]. 中国医学工程, 2005, 10(5): 458-461. | 
                     
                                
                                    
                                        | [23] | 霍波, 翟勇, 崔福斋. 蚕丝中蛋白构象含量与其力学性质间的关系[J]. 高分子学报, 2002, 3(3): 261-264. | 
                     
                                
                                    
                                        | [24] | 王佳倍, 胡建恩, 白雪芳, 等. 蚕丝素蛋白及其应用[J]. 精细与专用化学品, 2004, 12(12): 13-18. | 
                     
                                
                                    
                                        | [25] | 肖斌, 周大利, 杨为中, 等. 磷灰石-硅灰石/β磷酸三钙复合多孔材支架材料的制备和表征[J]. 无机材料学报, 2006, 21(2): 427-432. |