|
[1]
|
Zhong, M., Kong, L., Li, N., et al. (2019) Synthesis of MOF-Derived Nanostructures and Their Applications as Anodes in Lithium and Sodium Ion Batteries. Coordination Chemistry Reviews, 388, 172-201. [Google Scholar] [CrossRef]
|
|
[2]
|
Mazloomi, K. and Gomes, C. (2012) Hydrogen as an Energy Carrier: Prospects and Challenges. Renewable & Sustainable Energy Reviews, 16, 3024-3033. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, X., Chai, L., Ding, J., et al. (2019) Chemical and Morphological Transformation of MOF-Derived Bimetallic Phosphide for Efficient Oxygen Evolution. Nano Energy, 62, 745-753. [Google Scholar] [CrossRef]
|
|
[4]
|
Amiinu, I.S., Liu, X., Pu, Z., et al. (2018) From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries. Ad-vanced Functional Materials, 28, Article ID: 1704638. [Google Scholar] [CrossRef]
|
|
[5]
|
Wang, H.Y., Hung, S.F., Chen, H.Y., et al. (2015) In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. Journal of the American Chemical Society, 138, 36-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Islam, M.M., Faisal, S.N., Akhter, T., et al. (2017) Liq-uid-Crystal-Mediated 3D Macrostructured Composite of Co/Co3O4 Embedded in Graphene: Free-Standing Electrode for Efficient Water Splitting. Particle and Particle Systems Characterization, 2017, Article ID: 1600386. [Google Scholar] [CrossRef]
|
|
[7]
|
Chaikittisilp, W., Torad, N.L., Li, C., et al. (2014) Synthesis of Nanoporous Carbon-Cobalt-Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal-Organic Frameworks. Chemistry—A European Journal, 20, 4217-4221. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Baydoun, D., Li, H., Verani, C.N., et al. (2016) Efficient Water Oxidation Using CoMnP Nanoparticles. Journal of the American Chemical Society, 138, 4006-4009. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, Y.-Z., Zhang, R., Jiao, L., et al. (2018) Metal-Organic Framework-Derived Porous Materials for Catalysis. Coordination Chemistry Reviews, 362, 1-23. [Google Scholar] [CrossRef]
|
|
[10]
|
Huang, W., Ning, L., Zhang, X., et al. (2017) Metal Organic Framework g-C3N4/MIL-53(Fe) Heterojunctions with Enhanced Photocatalytic Activity for Cr(VI) Reduction under Visible Light. Applied Surface Science, 425, 107-116. [Google Scholar] [CrossRef]
|
|
[11]
|
Huang, W., Jing, C., Zhang, X., et al. (2018) Integration of Plasmonic Effect into Spindle-Shaped MIL-88A Fe, Steering Charge Flow for Enhanced Visible-Light Photocatalytic Degradation of Ibuprofen. Chemical Engineering Journal, 349, 603-612. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, X., Li, H., Hou, F., et al. (2017) Synthesis of Highly Efficient Mn2O3 Catalysts for CO Oxidation Derived from Mn-MIL-100. Applied Surface Science, 411, 27-33. [Google Scholar] [CrossRef]
|
|
[13]
|
Jiao, L., Seow, J.Y.R., Skinner, W.S., et al. (2019) Met-al-Organic Frameworks: Structures and Functional Applications. Materials Today, 27, 43-68. [Google Scholar] [CrossRef]
|
|
[14]
|
Pimentel, B.R., Parulkar, A., Zhou, E.K., et al. (2015) Zeo-litic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations. Chemsuschem, 7, 3202-3240. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Xie, F., Ren, Y., Zhou, Y.-Q., et al. (2019) Prepara-tion and Electrochemical Properties of ZIF-Skeleton Double-Shell Nanocage CoS/NiCo2S4. Chinese Journal of In-organic Chemistry, 35, 1635-1641.
|
|
[16]
|
Wu, R., Qian, X., Zhou, K., et al. (2014) Porous Spinel Zn(x)Co(3−x)O(4) Hollow Polyhedra Templated for High-Rate Lithium-Ion Batteries. Acs Nano, 8, 6297-6303. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cai, S., Zhao, C., Xin, F., et al. (2015) Nitrogen-Modified Carbon Nanostructures Derived from Metal-Organic Frameworks as High Performance Anodes for Li-Ion Batteries. Elec-trochimica Acta, 180, 852-857. [Google Scholar] [CrossRef]
|
|
[18]
|
Hu, L. and Chen, Q. (2014) Hollow/Porous Nanostruc-tures Derived from Nanoscale Metal-Organic Frameworks towards High Performance Anodes for Lithium-Ion Batteries. Nanoscale, 6, 1236-1257. [Google Scholar] [CrossRef]
|
|
[19]
|
Zou, F., Hu, X., Li, Z., et al. (2014) MOF-Derived Porous ZnO/ZnFe2O4/C Octahedral with Hollow Interiors for High-Rate Lithium-Ion Batteries. Advanced Materials, 26, 6622-6628. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ma, T.Y., Dai, S., Jaroniec, M., et al. (2014) Met-al-Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 136, 13925-13931. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhong, M., He, W.-W., Shuang, W., et al. (2018) Metal-Organic Framework Derived Core-Shell Co/Co3O4@ NC Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 57, 4620-4628. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hou, Y., Li, J., Wen, Z., et al. (2013) Co3O4 Nanoparti-cles Embedded in Nitrogen-Doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting. Nano Energy, 12, 1-8. [Google Scholar] [CrossRef]
|
|
[23]
|
Wu, R., Qian, X., Rui, X., et al. (2014) Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small, 10, 1932-1938. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wu, Z., Sun, L.P., Ming, Y., et al. (2016) Facile Synthesis and Excellent Electrochemical Performance of Reduced Graphene Oxide-Co3O4 Yolk-Shell Nanocages as a Catalyst for Oxygen Evolution Reaction. Journal of Materials Chemistry A, 4, 13534-13542. [Google Scholar] [CrossRef]
|
|
[25]
|
Wu, L., Li, Q., Wu, C.H., et al. (2015) Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 137, 7071-7074. [Google Scholar] [CrossRef] [PubMed]
|